
JIDE Diff Developer Guide

Contents
PURPOSE OF THIS DOCUMENT ... 1

FEATURES .. 2

DIFF ALGORITHM ... 2

MERGE ALGORITHM .. 2

JIDE DIFF .. 3

ABSTRACTDIFFPANE .. 3
BASICDIFFPANE .. 4
ABSTRACTMERGEPANE .. 5
CODEEDITORDIFFPANE .. 5
CODEEDITORMERGEPANE .. 6
COLOR OF LEGENDS ... 8

INTERNATIONALIZATION SUPPORT .. 8

Purpose of This Document
In computing, diff is a file comparison utility that outputs the differences between two files.

It is typically used to show the changes between a file and a former version of the same file. Diff
displays the changes made per line for text files. The output is called a diff or a patch since the
output can be applied with the Unix program patch. The output of similar file comparison
utilities are also called a "diff". Like the use of the word "grep" for describing the act of
searching, the word diff is used in jargon as a verb for calculating any difference. 1

In modern applications, a diff utility is very useful too. In addition to the traditional
development applications such as Java IDEs or source version control systems where a diff utility
is necessary, applications in finance, computing, network management also need diff utility to
compare text files, messages, xml files etc.

JIDE Diff brings a diff/merge component for Swing applications. Since the algorithm and the
infrastructure layer is generic which means it can be customized to compare any type of objects.
On one side, we have CodeEditorDiffPane which leverages JIDE Code Editor to view text files and
provides compare/merge features on top of the CodeEditor. On the other side, we have
TableDiffPane which can compare content of two tables or two tree tables. Behind the two

1 http://en.wikipedia.org/wiki/Diff

http://en.wikipedia.org/wiki/Diff�

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

components, we also have AbstractDiffPane and BasicDiffPane that you can subclass if you
would like a customized component instead of table or code editor. BasicDiffPane assumes the
components to be compared have a scroll pane, such as JList, JTree or JTable.

Features
Here are the main features of JIDE Diff.

 Compares text files side by side using CodeEditor.

 Compares two tables side by side using JTable or TreeTable

 Clearly indicate the difference of the two files by linking the changes using the colored
lines.

 Separate changes in the code editor or the table using colors and lines.

 Allows editing of the final result file when comparing.

 Three way merging support

Diff Algorithm
The diff algorithm is implemented in a class called Diff. Thanks for Jeff Pace’s contribute to

the algorithm which he shared at http://www.incava.org/projects/java/java-diff/. We took it
and used it in JIDE Diff with some minor modifications.

The diff algorithm can compare any two arrays. To compare two arrays, say from[] and to[],
you just need to do

 Diff<T> diff = new Diff<T>(from, to);
 List<Difference> differences = diff.diff();

The type T is the data type of the arrays “from” and “to”. Difference is a class that tells
which elements in the arrays are changed (inserted, deleted or changed).

A Difference consists of two pairs of starting and ending points, each pair representing
either the "from" or the "to" collection passed to Diff. If an ending point is -1, then the
difference was either a deletion or an addition. For example, if getDeletedEnd() returns -1, then
the difference represents an addition. The values of those points are the array index in the
“from” and “to” array.

Merge Algorithm
Merging is the act of reconciling multiple changes made to different copies of the same file.

Most often, it is necessary when a file is modified by two people on two different computers at
the same time. Later, these changes are merged, resulting in a single new file that contains both
sets of changes.

http://www.incava.org/projects/java/java-diff/�

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

A two-way merge performs an automated difference analysis between a file 'A' and a file 'B'.
This method considers the differences between the two files alone to conduct the merge and
makes a "best-guess" analysis to generate the resulting merge. Consequently, this type of merge
is usually the most error prone and requires user intervention to verify and sometimes correct
the result of the merge prior to completing the merge event.

A three-way merge is performed after an automated difference analysis between a file 'A'
and a file 'B' while also considering the origin, or parent, of both files (usually the parent is the
same for both). This type of merge is more likely to be usable in revision control systems, which
can guarantee that such a parent exists and is known. The merge tool examines the differences
and patterns appearing in the changes between both files as well as the parent, building a
relationship model to generate a merge of files 'A', 'B', and the parent 'C', to produce a new
revision 'D'. Comparing with two-way merge, this merge is the most reliable and has performed
well in practice. It has also required the least amount of user intervention, and in many cases,
requiring no intervention at all (depending upon the complexity of the merge) making the
process eligible for task automation.

In JIDE Diff, the merge algorithm is implemented in a class called Merge. It is a three-way
merge.

JIDE Diff
JIDE Diff has two main components – CodeEditorDiffPane and CodeEditorMergePane. Both

use CodeEditor as the text viewing component. In order to support other view component, we
introduced abstract level class for each of the pane. Here is the class hierarchy.

AbstractDiffPane
AbstractDiffPanel is the base for the diff/merge panes. Not matter it is a diff pane or a

merge pane, there are a toolbar, a status bar and content area. The content pane is a
JideSplitPane. It has either 2 or 3 panes for diff and merge respectively. The createPane(int
index) method is an abstract class that subclass can override to create the pane for the
JideSplitPane. The createDiffDivider(int index) is used to create the divider between two panes.
The divider has colored lines and shapes to show what the differences are.

The methods that subclasses can override are

• createPane(Object, int): override to use a different component to display the objects to
be compared.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

• customizePane(JComponent, int): override to customize the pane, such as registering a
listener, change some flags.

• customizePanes(JComponent[]): override to customize the panes. Different from the
previous method, this method should be used only when the customization involves
several panes.

• createToolBar(): override to create a different component for the toolbar.

• createStatusBar(): override to create a different component for the status bar.

• createLegendBar(): override to customize the legend bar. It is part of the status bar.

• initLayout(JComponent, JComponent, JComponent)}: override to arrange the pane, the
toolbar and the status bar.

For the toolbar, you can customize it to add more buttons. Here are the steps.

1. Assign a unique name for the action/button.

2. Added entries to diff.properties following the existing entries.

3. Override createActions method. After calling super.createActions(…), create a new
action and put it to _actions field which is a map mapping from the name to the action.
Please make sure the action’s actionCommand is same as the name.

4. Override customizeToolBar and call toolBar.add(createButton(_actions.get(name))).

BasicDiffPane
BasicDiffPane provides the next level of implementations if the content to be compared can

be displayed inside a JTable, JList, JTree or CodeEditor.

The methods that subclasses can override or implement are:

• createComponent(Object item, int index) to create JTable, JList or whatever component
that will display the content to be compared.

• getFromItems() and getToItems(): Both return an array. The array is converted from the
content to be compared. For the JTable case, maybe the content is the table model.
Then these two methods will convert the table model to an array. The two arrays will be
used to be run through the diff algorithm.

• getSelectedIndex(int paneIndex) returns the selection index of the component. It is used
for the diff navigation toolbar.

• createMarkerSupport(JComponent) creates the marker support for the component. This
is required for the DiffMarker that shows where the diffs are on a vertical marker stripe.

• createRowMarginSupport(JComponent, JScrollPane) creates the row margin support for
the component. This is required to display a row number margin and a diff margin to
better align the modification/insertion/deletion of the content.

• highlightChanged(...), highlightInserted(...) and highlightDeleted(...) methods should be
overridden to show different highlights in the component.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

• highlightChangedExactly(...) and createLineDiff(int fromOffset, int toOffset) methods
can be overridden if you want to display the diff highlight within the same row/line. This
is used only when isHighlightExactChange returns true and only one row/line is
changed.

• clearHighlights(),startHighlights(), and endHighlights() methods will be called before the
highlighting process starts and ends. You can override them appropriately if you have
something to do before and/or after the highlighting process.

• insert(...), delete(...) and replace(...) methods should be implemented or overridden to
support the editing feature of the diff margin area. By default, there are replace, delete
icons between the two diff components. User can use them to edit the "To" content if
the three methods are implemented.

AbstractMergePane
AbstractMergePane extends AbstractDiffPane to add one more pane since it is for a three-

way merge. It also adds one more button to the toolbar using the way described in the section
above.

CodeEditorDiffPane
Here is what a CodeEditorDiffPane looks like under Window L&F.

Figure 1 JIDE Diff Pane

CodeEditorDiffPane subclasses AbstractDiffPane and implemented createPane and
createDivider methods. The createPane method uses CodeEditor. We used CodeEditor is

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

because it supports color syntax, margin component and flexible highlight feature. In order to
show the differences clearly, the highlight feature is very important. The margin component is
used to place controls to accept or discard the change. Of course, if you have a 3rd party code
editor component that meets the requirement, you can override createPane method to use it
too.

The API for CodeEditorDiffPane is actually very simple.

CodeEditorDiffPane diffPane = new CodeEditorDiffPane();
diffPane.setFromTitle("Local");
diffPane.setToTitle("Remote");
diffPane.setFromText(fromText);
diffPane.setToText(toText);

You need to have two pieces of text. The first piece of text is treated as “from” or “original”
or “source”. The second piece of text is treated as “to” or “modified” or “destination”. You will
set the text using setFromText and setToText methods. Then all you need to do is to call diff() to
run the diff algorithm and show the differences on the UI.

 diffPane.diff();

The diff() will return a list of differences. If you are interested in it, you can capture the
return value. In most cases, the return value can be ignored.

CodeEditorDiffPane provides buttons on the margin area of the code editor to allow user to
accept or ignore the changes. See below.

After user finishes the diff process, you call getToText() to get the final result and save it

somewhere if user decides to keep it.

CodeEditorMergePane
Here is what a CodeEditorMergePane looks like under Window L&F with Office 2007 style.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

Figure 2 JIDE Merge Pane

As you can see, CodeEditorMergePane has three panes. In the real life, you need to merge
because the file is modified at the same time by two people. For example, in the source code
control system, two developers checked out the same file, the first developer modified it and
checked in. The second developer is modifying the file at the same time. Now when he/she
updates, he/she will have to merge the changes. Using this example, the left pane is the local
modifications by the second developer. The middle pane is the base without the two
developers’ modifications. The right pane is the modifications from the first developer. Here is
what the code looks like for this scenario.

CodeEditorMergePane diffPane = new CodeEditorMergePane(…, …, …);

diffPane.setFromTitle("Local Modifications");
diffPane.setToTitle("Merge Result");
diffPane.setOtherTitle("Remote Modifications");

Then you call merge() to run the three-way merge algorithm and show the differences
and/or conflicts on the UI.

diffPane.merge();

CodeEditorMergePane provides buttons on the margin area of the code editor to allow user
to accept or ignore the changes. There is also a toolbar button to accept all non-conflicting
changes. For the conflicts, user has to review it and decide what to do. See below.

After user finishes the merging process, you call getToText() to get the merge result and

save it somewhere if user decides to keep it.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

Color of Legends
On the bottom of the diff pane and the merge pane, you can see the color boxes. We used

different color to indicate the meaning of the changes.

Those colors can be customized through UIDefaults. All four UIDefaults are defined in a class

called DiffUIDefaultsCustomizer. You can create your own UIDefaultsCustomizer and add it to
LookAndFeelFactory if you want to change it for all diff and merge panes.

public class DiffUIDefaultsCustomizer implements LookAndFeelFactory.UIDefaultsCustomizer {
 public void customize(UIDefaults defaults) {
 Object[] uiDefaults = new Object[]{
 "Diff.changed", new ColorUIResource(196, 196, 255),
 "Diff.deleted", new ColorUIResource(200, 200, 200),
 "Diff.inserted", new ColorUIResource(196, 255, 196),
 "Diff.conflicted", new ColorUIResource(255, 153, 153),
 };
 defaults.putDefaults(uiDefaults);
 }
}

If you just want to change the colors for a particular diff/merge pane, you can call
setChangedColor, setInsertedColor, setDeletedColor, or setConflictedColor to adjust the colors.

Internationalization Support
All Strings used in JIDE Diff are contained in one properties file called diff.properties under

com/jidesoft/diff. Some users contributed localized version of this file and we put those files
inside jide-properties.jar. If you want to support languages other than those we provided, just
extract this properties file, translated to the language you want, add the correct postfix and then
jar it back into jide-properties jar. You are welcome to send the translated properties file back to
us if you want to share it.

	Purpose of This Document
	Features
	Diff Algorithm
	Merge Algorithm
	JIDE Diff
	AbstractDiffPane
	BasicDiffPane
	AbstractMergePane
	CodeEditorDiffPane
	CodeEditorMergePane
	Color of Legends

	Internationalization Support

