
JIDE Components Developer Guide
PURPOSE OF THIS DOCUMENT .. 2

WHAT IS JIDE COMPONENTS ... 2

PACKAGES ... 2

DOCUMENT PANE .. 3

BACKGROUND .. 3
WHAT DOES A TABBED-DOCUMENT INTERFACE LOOK LIKE? ... 3
THE USER INTERFACE ... 4
THE APIS ... 6

The Document .. 6
Document Group .. 9
DocumentComponentEvent ... 9

PERSISTENCE .. 10
UI DEFAULTS USED BY DOCUMENTPANE .. 11

STATUS BAR ... 12

STATUSBAR AND STATUSBARITEM.. 12
PROGRESSSTATUSBARITEM ... 12
LABELSTATUSBARITEM ... 13
BUTTONSTATUSBARITEM ... 13
TIMESTATUSBARITEM .. 13
MEMORYSTATUSBARITEM .. 14
RESIZABLESTATUSBARITEM ... 14
GENERAL COMMENTS ON STATUSBAR .. 15

Size of StatusBarItem ... 15
Border of StatusBarItem .. 15

UI DEFAULTS USED BY STATUSBAR ... 15

COLLAPSIBLEPANE .. 15

USING SEVERAL COLLAPSIBLEPANES AS A GROUP ... 19

OUTLOOKTABBEDPANE/FLOORTABBEDPANE .. 20

ALERT .. 21

BALLOONTIP .. 22

DIFFERENT BALLOON SHAPE ... 22
SHADOW STYLE... 23

EXPANDEDTIP .. 24

NAVIGATION COMPONENTS ... 25

NAVIGATIONLIST ... 26
NAVIGATIONTREE ... 26

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

2

NAVIGATIONTABLE .. 27

BREADCRUMBBAR ... 28

CUSTOM ANIMATION ... 29

INTERNATIONALIZATION SUPPORT ... 29

Purpose of This Document
This document is for developers who want to develop applications using JIDE Components.

What is JIDE Components
Generally speaking, each JIDE product focuses in a particular area. For example, JIDE

Docking Framework provides a flexible and powerful window management system. JIDE Grids
provides an extension on top of JTable and so on. The only product that doesn’t have a focus is
the JIDE Components. We put any component that doesn’t belong to a particular area under this
umbrella. It contained quite a number of components at the beginning because we introduced
all components in JIDE Common Layer as part of JIDE Components. As of April 2007, we open
sourced JIDE Common Layer thus reduced the size of JIDE Components. So right now, JIDE
Components only has several major components left. In the future, we will introduce more
generic components and add to this product.

Packages
The table below lists the packages in JIDE Components. All packages are in jide-

components.jar

Packages Description

com.jidesoft.document
(in jide-components.jar)

DocumentPane – tabbed-document interface
implementation similar to what you see in Visual Studio
.NET IDE

com.jidesoft.status
(in jide-common.jar)

StatusBar – A generic status bar implementation.

com.jidesoft.pane
(in jide-components.jar)

CollapsiblePane, FloorTabbedPane, OutlookTabbedPane
etc.

com.jidesoft.alert
(in jide-components.jar)

Alert component

com.jidesoft.tooltip
(in jide-components.jar)

BalloonTip and ExpandedTip component

com.jidesoft.animation Animation related classes

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

(in jide-components.jar)

com.jidesoft.navigation
(in jide-components.jar)

Navigation related components, such as BreadcrumbBar,
NavigationList, NavigationTree and NavigationTable

Document Pane

Background
Most software applications have a “document” concept. For example, in a typical Java IDE,

the Java file is the “document”. In a photo processing application, an image file such as a gif or
jpeg is the “document”. The document is usually the center of an application, so selecting the
right model to manage those documents is very important.

Looking at the history of how applications organize documents, there are two popular
models, known as SDI and MDI.

SDI – Single-Document Interface

Most of early IDEs used SDI - they can only deal with one document at a time. If you want to
open another document, you must either close the current one or open a completely new
instance of the IDE. Notepad.exe is an example of this type of application. Simple as it is, the
drawbacks are obvious. One big drawback is that the user can only view one document at a
time. However, because SDI is simple to use there are still a lot of applications using SDI,
especially applications for consumers and home users.

MDI – Multiple-Document Interface

In MDI applications, you can view/edit multiple documents at the same time. You can either
use a Windows menu or hotkeys (such as Ctrl-Tab) to navigate between those documents. MDI
overcomes the major drawbacks of SDI, but has some drawbacks of its own. The two biggest
issues are that it wastes screen space if not maximized because there will be unused space
around child windows, and that it is difficult to navigate if maximized. Many users are frustrated
when child windows are locked into the parent window in an MDI interface and find it very hard
to use. Pure MDI got popular for several years and then died down because of those drawbacks.

If your application is complicated and you are considering using an MDI interface, you
should investigate alternative, MDI-like designs. We provide a Tabbed-Document Interface (TDI)
to satisfy this need.

In JIDE Components, we looked at a new way to view/edit multiple documents – Tabbed-
Document Interface. We didn’t invent this approach; many IDEs already use an interface of this
kind, such as Visual Studio .NET, IntelliJ IDEA, and JBuilder. However, it’s an obvious trend in
recent software applications. We just want to make it so that everyone can have it.

What does a Tabbed-Document Interface look like?
To understand the tabbed-document interface, you should first understand tabbed panes.

Each tab is a document or a document view. We call a tab dedicated to holding a document (as
opposed to a side window) a document tab. A document tab shows the document title and an

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

4

optional icon. You can use the icon to indicate the document type, such as a Java file or XML
file. Several document tabs form a document group. Our implementation allows multiple
document groups, so that you can view multiple sets of documents at the same time.

The User Interface
Most commonly used operations related to a document pane can be done through the

document tabs.

• Clicking on the tab will activate that document.

• Right-clicking on a document tab will popup a context menu. The built-in menu already
comes with a lot of built-in functionality and can be extended.

The screen shot above shows a context menu that appears when a user right-clicks on the
“Readme” tab. In the menu, “Close” means close the currently selected document and “Close
All” means close all documents (i.e. all the tabs that are within the document tabbed pane). The
“x” button to the right is the equivalent to “Close”. The “Next” and “Previous” buttons mean set
the focus on the next and previous document, respectively. “New Horizontal Group” means
create a document group and put the currently selected document into that new group.

Using the screen shot above as an example, after you choose “New Horizontal Group”, there
will be three document groups, with each group having one document. “Move to Next Tab
Group” means move the selected document to next document group. Please note that the
context menu only lists actions that are allowed (see below for another example). Since there is
only one document group in the example below, you are allowed to create a new document
group either vertically or horizontally. That’s why you see both “New Horizontal Group” and
“New Vertical Group” in the context menu.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

In the next example, there is no menu choice for either “New Horizontal Group” or “New

Vertical Group”. Since there is only one document in the current document group, it doesn’t
make sense to create another group. However, you can move it to another group.

Another, simpler way to move windows and create groups is to use drag and drop.

• Drag a document tab horizontally within a tab area and the tab order will change.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

6

• Dragging a tab and dropping it near the south border or east border will create a new

horizontal or vertical tab group, respectively.

• Dragging a tab and dropping it in another document group’s tab area will move the

document to that document group.

• Dragging a tab and dropping it in the middle of a document will popup a menu allowing

you choose what to do.

• Anytime during dragging, pressing ESC will cancel the dragging.

The APIs

The Document

In order to represent the “document” concept, we introduced a class called
DocumentComponent. It represents the concept of a “document” in a DocumentPane. It may
not be the actual document in your application. But no matter what kind of document you are
dealing with, you can easily wrap it into DocumentComponent. A typical usage is to read in a
document, create a java.awt.Component that views/edits it, construct a DocumentComponent
around the Component, and pass the DocumentComponent to your DocumentPane.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

This is the constructor of a DocumentComponent.

DocumentComponent(Component component, String name, String title, Icon icon)

You must give a unique name to each document component, even if you open the same
document twice. If you add a document with a duplicate name, you will get a run-time
exception. It’s up to you whether you want to catch it or not. You can always check to see if the
name is in use by calling isDocumentOpened(String name). Note that this isn’t a significant
restriction because the name is only a default value for the visible strings.

The class for tabbed-document interface is com.jidesoft.document.DocumentPane.

To open a document (i.e. display it in a given pane), call
openDocument(DocumentComponent document).

DocumentPane panel = new DocumentPane();
panel.openDocument(new DocumentComponent(
 new JScrollPane(createTextArea("Readme.txt")),
 "Readme", "Readme", fileIcon));

To close a document (i.e. remove it from the panel), call closeDocument(String name). To
close all documents, call closeAll().

To activate a document, call setActiveDocument(String name).

To retrieve the current active document, call getActiveDocument() or
getActiveDocumentName(). The former will give you the DocumentComponent; the latter will
give you just the name. If there is no active document, both return null.

To navigate between open documents, you can use nextDocument() and prevDocument().

Right mouse clicking on the tab will pop up a context menu. We provide a default menu,
but you can customize it by calling setPopupMenuCustomizer(PopupMenuCustomizer).

 public static interface PopupMenuCustomizer {
 void customizePopupMenu(JPopupMenu menu, final IDocumentPane pane, final String

dragComponentName, final IDocumentGroup dropGroup, final boolean onTab);
 }

The getDocumentNames() method will give you an array of all opened documents, in the
order that they were added.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

8

At any time, if you know the name of the document, you can call getDocument(name) to get
the DocumentComponent. If you have a reference to the actual component, calling
getNameOf(component) will give you the name if the component is opened.

You can also customize the appearance of the title. For the example below, the title of the
Java file is too long, so we put “…” in the middle to replace some characters. You can still tell or
guess where the file is located and what the file name is.

We understand you may have different requirements, so we allow you to customize both

the content and format of the title. Depending on what you want to customize, you can use one
of two methods:

• If you just want to display a title with different text but keep the color and style the
same (bold for active document and plain for other documents), you can call
DocumentPane.setTitleConverter(StringConverter). StringConverter is an interface that
can convert from an input string to an output string. The input string is the actual title
and the output string is what is to be displayed.

• If you want a complete customization of the title, including color, style and text, you can
write your own class extending DocumentComponent and override the getDisplayTitle()
method. Since you can use html in the returned display title, you have a lot of flexibility.
Below is example source code for coloring the title. In this example, not only is “…” in
the beginning of the title, rather than the middle, but also the color is changed.

Below is the code that is used to display the screenshot above.

public String getDisplayTitle() {
 // just convert the string to make it shorter for example.
 String title = getDocumentPane().getTitleConverter().convert(getTitle());

 // for active document, display as blue, else display as red and italic font.
 if (getName().equals(getDocumentPane().getActiveDocumentName())) {
 title = "<html>" + title + "<html>";
 }
 else {
 title = "<html><i>" + title + </i>< html >";
 }
 return title;
}

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

Document Group

DocumentPane supports grouping several documents as a document group. There is an
IDocumentGroup interface for it. By default, we put all documents in the same group in a
subclass of JideTabbedPane - TdiGroup. In fact, you can also use other components to represent
document groups such as split pane. You can do that by overriding createDocumentGroup
method of DocumentPane.

The reason for document groups is for the user to view two documents side-by-side. If your
application is simple and there is no requirement to view two documents at the same time, you
can disable the feature by calling setGroupAllowed(false). You can also call setRearrangeAllowed
to disable the whole drag-n-drop or context menu to create new group. This only affects the
user. As a developer, you can still use the API to create document group. There is also a
setReorderAllowed which allows you to disable the drag-n-drop to reorder the document order
in the same document group.

To create a new document group programmatically, you can call newDocumentGroup.
Please note, we don’t allow an empty document group. You must put at least one
DocumentComponent in the group. That’s why the newDocumentGroup method takes a
document name as the first parameter as it will put that document into the newly created
document group.

Please note, there is no removeDocumentGroup method. When you remove or close the last
document from the group, the document group will be removed automatically.

By default, the tabs of documents are on top. However you can call
setTabPlacement(DocumentPane.BOTTOM) to change them to be at the bottom. If you want
more control, you can customize it by creating your own TabbedPaneCustomizer. Call
setTabbedPaneCustomizer() to set your customizer.

DocumentComponentEvent

We also provide listener and event support. A DocumentComponentEvent is fired before
closing, after opening, after closed, after activated, or after deactivated. Opening a document
means openDocument is called; closing it means the user triggered the close button or
closeDocument was called. If you handle the before-closing event
(DOCUMENT_COMPONENT_CLOSING), you can call setAllowClosing(false) to prevent the
document from being closed. Note that this function only affects the current attempt to close.
If the user tries to close again, you will need to call setAllowClosing(false) again to prevent
closing again. Closed means the document was just closed. Activated means the document is
selected and deactivated means the opposite. Only one document can be selected or activated
at a time. We support five events that are specific to document components.

DOCUMENT_COMPONENT_OPENED

DOCUMENT_COMPONENT_CLOSED

DOCUMENT_COMPONENT_CLOSING

DOCUMENT_COMPONENT _ACTIVATED

DOCUMENT_COMPONENT _DEACTIVATED

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

10

Call addDocumentComponentListener(listener) on any DocumentComponent instance to add
a listener. You can use the same or different instances of listeners on different document
components.

Persistence
We provided a very easy way to persist the opened documents. The things we persist

include the exact number of document groups and exact documents in each group, selected
document in each group, the active group, orientation of the splits, and the dimension of each
group. However, since the DocumentPane doesn’t know how to create DocumentComponent,
it’s your responsibility to remember the list of opened documents when the application closes
and create them when the application starts.

Let’s use an example. Say you have three files opened in your DocumentPane when
application exits. You need to call documentPane.getDocuments() to get an iterator of all
opened documents, save it somewhere. You should keep enough information so that next time
you can create those DocumentComponents. After that, call
documentPane.getLayoutPersistence().saveLayoutData().

When the application starts, you need to recreate those DocumentComponents, add them
to a java.utils.List, and set it to the DocumentPane (see below)

// Create a list of DocumentComponent
List list = new ArrayList();
list.add(documentComponent1);
list.add(documentComponent2);
list.add(documentComponent3);
....

documentPane.setOpenedDocuments(list);
// load the layout of DocumentPane
documentPane.getLayoutPersistence().loadLayoutData();

The LayoutPersistence is the same class we used to persistent the layout for JIDE Docking
Framework and JIDE Action Framework. Knowing that, you can find many ways to save and load
the layout. For example, if in your application, you can easily persist a String, you can use
documentPane.getLayoutPersistence().getLayoutData() to get the layout as a String and save it
somewhere. When the application starts, you can call documentPane.getLayoutPersistence().
setLayoutData(String) to reload the layout.

For those who also use JIDE Docking Framework or JIDE Action Framework, if you want to
save all those layouts information in a single file, you can do it too. Just create a
LayoutPersistenceManager and add all instances of LayoutPersistence to this manager.

_layoutPersistence = new LayoutPersistenceManager();

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

_layoutPersistence.addLayoutPersistence(getDockableBarManager()); // action
_layoutPersistence.addLayoutPersistence(getDockingManager()); // dock
_layoutPersistence.addLayoutPersistence(_documentPane.getLayoutPersistence()); //

DocumentPane

……
// call _layoutPersistence to save and load layout
// In this case, layoutPersistence.saveLayout() will save the layouts of
// command bars, dockable frame and documents layout in DocumentPane
// in a single layout file.

UI Defaults used by DocumentPane
Name Type Description

DocumentPane.groupBorder Border The border of each document group.

DocumentPane.newHorizontalGroupIcon Icon Icon used for action to new a horizontal group

DocumentPane.newVerticalGroupIcon Icon Icon used for action to new a vertical group

DocumentPane.boldActiveTab Boolean Whether the text on active tab is bold.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

12

Status Bar
A StatusBar is never a central part of an application but almost every application has it. A

well-designed status bar can make a user interface more user-friendly because it gives
immediate, non-intrusive responses to user actions.

StatusBar and StatusBarItem
The main class of StatusBar is com.jidesoft.swing.StatusBar. It is divided into a series of

items of type StatusBarItem. In the example below, the whole thing is the StatusBar and each
gray box is a StatusBarItem. You can use one of several StatusBarItem’s that we developed or
you can create your own StatusBarItem.

ProgressStatusBarItem
ProgressStatusBarItem is usually the widest item on status bar. It can display a text message

or it can display progress in an optional progress bar. You can activate the progress bar by
calling setProgressStatus to some string. This method call will show the built-in progress bar,
then you can set the percentage finished using setProgress(int). In the below status bars, the
second one is in running mode.

Method Description

setStatus(String) Set the status such as “Ready” in the screen shot
above

setProgressStatus(String) Set the status mode when progress bar is visible, such
as “Running” in the screenshot above

setProgress(int) int is a value from 1 to 100, representing the
percentage on the progress bar. When this reaches
100, the progress bar will be hidden automatically (so
you might want to round down).

setCancelCallback(CancelCallback) At the end of progress bar there is a Cancel button.
You can add a callback to do something if the user
presses the Cancel button. If the cancelCallback you
passed in is null then the Cancel button will not be
shown. See interface CancelCallback in the JavaDoc
for more details.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

LabelStatusBarItem
If you just want to display a text on status bar, you can use this. It is simply a JLabel inside a

JPanel. Below is an example.

Method Description

setText(String) Sets the text to be displayed on the label

setToolTip(String) Sets the tool tip to be displayed on the label

setIcon(Icon) Sets the icon to be displayed on the label

addMouseListener(MouseListener) Adds the specified mouse listener to receive mouse
events

setAlignment(int) Sets the alignment. The value can be JLabel.CENTER,
JLabel.LEFT, or JLabel.RIGHT.

getComponent() Gets the actual component - in this case it’s the
JLabel.

ButtonStatusBarItem
This is similar to LabelStatusBarItem, just replace the JLabel with a JButton.

Method Description

setText(String) Sets the text to be displayed on the button

setToolTip(String) Sets the tool tip to be displayed on the button

setIcon(Icon) Sets the icon to be displayed on the button

addMouseListener(MouseListener) Adds the specified mouse listener to receive mouse
events

getComponent() Gets the actual component - in this case it’s the
JButton.

TimeStatusBarItem
TimeStatusBarItem is used to display a clock or calendar on the status bar. You can

customize the format and display characteristics of the time and date.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

14

Method Description

setUpdateInterval(int) How often to do a refresh, in ms (the default is 500 ms).
If you don’t display the seconds field, or you just display
the date then you can change the interval to a much
larger number.

setTextFormat(DateFormat) Set the DateFormat that formats the text displayed on
the status bar.
Note: you can use a localized version of DateFormat to
do the localization.

setTooltipFormat (DateFormat) Set the DateFormat that formats the text of the tool tip
displayed when the mouse hovers over the date.

TimeStatusBarItem extends LabelStatusBar so it also has all methods of LabelStatusBarItem
that you can use.

MemoryStatusBarItem
We borrowed the idea of MemoryStatusBarItem from IntelliJ IDEA. The

MemoryStatusBarItem is used to display currently used memory vs. total memory in the current
JVM. It also allows the user to manually run garbage collection by pressing the garbage can
button. In the example below, 3M is the amount of used memory and 4M is the total memory.

Method Description

No public methods

ResizableStatusBarItem
ResizableStatusBarItem is a special status bar item that can be dragged to resize the JFrame.

It should be used as the last status bar item on status bar. If the JFrame is not maximized and
resizable is true, you will see a triangle shadow like below to indicate you can drag to resize (the
first screenshot below). If the JFrame is maximized thus not resizable, the triangle shadow will
disappear to indicate it is not resizable (the second screenshot below).

Method Description

No public methods

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

General Comments on StatusBar

Size of StatusBarItem

StatusBar uses JideBoxLayout (if you prefer, you can skip this part and jump to Layout
section for how to use JideBoxLayout). Thus, when you add the StatusBarItem, you can add it as
VARY, FLEXIBLE or FIX. Usually, ProgressStatusBarItem should add as VARY because you want it
to be the only one that resizes. All the others should be added as FLEXIBLE. If you want the
width of a FLEXIBLE StatusBarItem to be fixed, you can call setPreferredWidth(int). If you don’t
do so, StatusBarItem will resize as the content changes.

The gap between StatusBarItem’s is also defined in UIDefaults as “StatusBar.gap” (with the
default being 2 pixels).

Border of StatusBarItem

No border should be specified by a StatusBarItem itself. When it is added to StatusBar, the
StatusBar will call setBorder on it, so that all items have the same border. The border is also
defined in UIDefaults as "StatusBarItem.border".

UI Defaults used by StatusBar
Name Type Description

StatusBarItem.border Border The border of each status bar item

StatusBar.margin Insets The margin of the whole status bar

StatusBar.gap Integer The gap between each status bar item

StatusBar.background Color The background of status bar

StatusBar.font Font The font used by status bar

CollapsiblePane
CollapsiblePane, as the name indicates, is a pane which can be collapsed (see below for an

example).

Before collapsing …

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

16

After collapsing …

It’s actually very easy to create a CollapsiblePane - see below for the code that creates the

CollapsiblePane shown above. All you need to do are to set the title bar title (and title bar icon if
any) and the content pane. Then the content pane will be hidden or shown when user clicks on
the collapse button on title bar.

CollapsiblePane panel = new CollapsiblePane("File and Folder Tasks");
JPanel labelPanel = new JPanel();
labelPanel.setLayout(new GridLayout(6, 1, 1, 0));
labelPanel.add(createHyperlinkButton("Rename this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.RENAME)));
labelPanel.add(createHyperlinkButton("Move this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.MOVE)));
labelPanel.add(createHyperlinkButton("Copy this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.COPY)));
labelPanel.add(createHyperlinkButton("Publish this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.PUBLISH)));
labelPanel.add(createHyperlinkButton("Email this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.EMAIL)));
labelPanel.add(createHyperlinkButton("Delete this file",
SampleIconsFactory.getImageIcon(SampleIconsFactory.CollapsiblePane.DELET)));
labelPanel.setOpaque(true);
labelPanel.setBackground(Color.WHITE);
panel.setContentPane(labelPanel);
return panel;

CollapsiblePane has a corresponding Component UI class, called CollapsiblePaneUI. Here are
keys of the UIDefaults which you can customize.

Name Type Description

CollapsiblePane.background Color Background

CollapsiblePane.foreground Color Foreground

CollapsiblePane.border Border Border of the collapsible pane

CollapsiblePane.font Font Font

CollapsiblePane.contentBorder Border Border of the content pane

CollapsiblePane.titleBorder Border Border of the title bar

CollapsiblePane.titleFont Font Font of the title bar.

CollapsiblePane.collapseText String Text for the collapse/expand button

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

17

CollapsiblePane.collapseToolTip String ToolTip of the collapse/expand button

CollapsiblePane.upIcon Icon Icon of the button when it means collapse

CollapsiblePane.downIcon Icon Icon of the button when it means expand

When the content pane is collapsed or expanded a CollapsiblePaneEvent will be fired. There
are four types of events, which will be fired at different times. When the content pane begins to
expand, COLLAPSIBLE_PANE_EXPANDING is fired. When it finished expanding,
COLLAPSIBLE_PANE_EXPANDED will be fired. Correspondingly when content is collapsed, there
COLLAPSIBLE_PANE_COLLAPSING and COLLAPSIBLE_PANE_COLLAPSED events will be fired. You
can use these events to control the content pane - to initialize, load or save etc. You just call
collapsiblePane.addCollapsiblePaneListener to add such a listener.

To enrich the visual effect, you can also set a different style to CollapsiblePane. For example,
if you call pane.setStyle(CollapsiblePane.TREE_STYLE), you will see a tree-style CollapsiblePane
as shown in the screenshot below. There are three styles available – DROPDOWN_STYLE,
TREE_STYLE and PLAIN_STYLE. The default style is DROPDOWN_STYLE. You can see an example
of three styles in the picture below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

18

Figure 1 Different styles

You can also set an icon for the CollapsiblePane, which will appear on the title bar before
the title text. Although this uses a gap of 4 pixels by default, you can change this by calling
setIconTextGap(). In addition, you can set different alignments by calling setVerticalAlignment(),
setVerticalTextPosition(), setHorizontalAlignment(), or setHorizontalTextPosition();

CollapsiblePane has a special model called emphasized mode. In this mode, the title bar of
collapsible pane will have different background and foreground from regular modes so that it
can stand out among other collapsible panes. To set this mode, simply call setEmphasized(true).

Figure 2 Emphasized v.s. Non-emphasized CollapsiblePane

CollapsiblePane supports several different LookAndFeels such as regular Windows L&F,
Windows XP L&F, Eclipse L&F and Metal L&F (see below)

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

19

 Figure 3 Collapsible Pane under different L&Fs

Using several CollapsiblePanes as a group
Usually several CollapsiblePanes are used together in a group. We created a special panel

called CollapsiblePanes to make this usage easier. It’s nothing but JPanel using JideBoxLayout
allowing you to add several CollapsiblePane to it. The panel has different backgrounds under
different L&Fs. See below for how to use it.

CollapsiblePanes panes = new CollapsiblePanes();
panes.add(collapsiblePane1);
collapsiblePane1.setEmphasized(true); // option to make one of the collapsible pane

emphasized.
panes.add(collapsiblePane2);
panes.add(collapsiblePane3);
panes.addExpansion(); // to push collapsible panes upward when they are collapsed.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

20

OutlookTabbedPane/FloorTabbedPane
Both OutlookTabbedPane and FloorTabbedPane extend

JTabbedPane. A typical tabbed pane has many panels and
corresponding tabs. The user can click on a tab to choose which
panel to view. Although an OutlookTabbedPane or a
FloorTabbedPane also has many panels, instead of using tabs, it
just uses buttons to switch between panels. The buttons are
organized vertically, as floors in a storied building (that’s how it
gets the name of FloorTabbedPane). In the case of
OutlookTabbedPane, the button position remains at the same
location. In the case of FloorTabbedPane, the button location
changes. One famous example of it is the Outlook Navigation
Pane in the Microsoft Outlook product. FloorTabbedPane
implements the navigation pane style in Outlook 2000.
OutlookTabbedPane implements the same navigation pane in
Outlook 2003.

Although OutlookTabbedPane and FloorTabbedPane extend JTabbedPane, there are no
additional public methods on them, so you can use it in place of an existing JTabbedPane.

There is no corresponding ComponentUI of this class. The buttons will have the same style
as the JideButton, and the components will have whatever style was specified when the user
created them.

In case you want to provide your own button replace the buttons used by FloorTabbedPane,
you can extend FloorTabbedPane and override createButton() method. This is the default
implementation.

 protected AbstractButton createButton(Action action) {
 return new FloorButton(action);
}

 private class FloorButton extends JideButton implements UIResource {
 public FloorButton(Action a) {
 super(a);
 setButtonStyle(TOOLBOX_STYLE);
 }
 }

In your overridden implementation, you can create whatever button you want. However the
button must implement UIResource. If not, our code will check it and throw an
IllegalArgumentException.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

21

For OutlookTabbedPane, there are two types of buttons – the full size buttons that appear
on top and the icon only buttons which appear on the bottom panel. You can customize those
two buttons by overriding customizeButton(AbstractButton button) and
customizeBottomButton(AbstractButton button) respectively.

Depending on the available vertical space, OutlookTabbedPane can be adjusted to show
tabs as full size buttons or as icon only buttons. OutlookTabbedPane also allows user to choose
which tabs are visible as well as the tab order.

Alert
Alert is a special popup component which can be used to display messages such as new

email notification, warning or error messages. The function is very similar to Swing's
JOptionPane message box except Alert component doesn't block.

For example, you just want to inform your user that a job they submitted a while ago is
completed. You could use StatusBar but in this particular case, you want something more
obvious than StatusBar as people tend to ignore the message on StatusBar. Before you have
Alert component, you will use JOptionPane with OK button. From usability point of view, this is a
bad design because user has to stop what he/she is working on and click on the OK button to
dismiss the dialog. If you use Alert in this use case, it will be much better. User can still work on
whatever he/she is working on and just take a peek at the Alert and know the job is complete.
After a few seconds, the Alert window will disappear automatically.

To make it interesting, Alert supports all kinds of custom animations when entering and
exiting. For example, it supports fly-in or fly-out, fade-in or fade-out. You can also position it any
location of the screen including nice pre-set locations (four corners, four sides and center).
When it flies in or out, you can also set different path - straight line or curve or wave. All those
features will enhance the appearance and effect of Alert so that it can deliver the right message
to end users.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

22

Figure 4 Alert example

To create your own Alert, you just need to new Alert(), then add contents to its content
pane. You probably should setup a few things such as setTimeout(int ms) so that it will hide
automatically after a few seconds. To display the Alert, you call one of the showPopup()
methods.

If you didn’t set the custom animation, no animation will be used. If you want to learn how
to create CustomAnimation, please see next section.

BalloonTip
BalloonTip is a special tooltip that has a balloon shape. See below.

You can put any component inside a BalloonTip. It can be done either through the

constructor or use setContentPane() method. Then all you need to do is to call show(owner, x, y)
to display it. Please note the x and y position is relative to the owner

Different balloon shape
BalloonTip supports different balloon shapes. By default we support several shapes. You can

use setBalloonShape method to change it (see below).

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

23

They are RoundedRectangularBalloonShape, RectangularBalloonShape, RectangularShape,

OvalShape and RoundedRectangularShape, and respectively.

You can also define your own shapes by implementing BalloonShape interface or extending
one of our existing shapes with overridden methods.

The RoundedRectangularBalloonShape and RectangularBalloonShape supports adjustments
of several values. See below for a few examples.

Shadow Style
BalloonTip also support two different kinds of shadows – perspective shadow and drop

shadow. It can be changed using setShadowStyle. Same as BalloonShape, ShadowStyle is also an
interface. You can use one of the existing ShadowStyle we created or you can create your own
style. For our default shadow styles, you can adjust various settings.

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

24

ExpandedTip
ExpandedTip makes a component showing an expanded tool-tip when the mouse is a node

or a cell. ExpandedTip is the base class and has subclasses to implement the feature for different
components. It is useful for JList, JTree and JTable when they are narrow but the content is
wide.

It is extremely easy to use. If you have a JList, JTree, or a JTable, Just call

ExpandedTipUtils.install(list);

or

ExpandedTipUtils.install(tree);

or

ExpandedTipUtils.install(table);
ExpandedTipUtils.install(table.getTableHeader());

For the table, it doesn't help too much if only the cell values are shown. That's why we also
make it possible to show the expanded tip for the table header along with the cells.

The ExpandedTipUtils will call the corresponding ListExpandedTip, TreeExpandedTip and
TableExpandedTip. Of course you can use these classes directly if you want. It would be

new ListExpandedTip(list);

ExpandedTip is general enough to handle any component that is inside a JScrollPane. You
can subclass ExpandedTip and implement the following two methods.

 protected abstract Rectangle getRowBounds(int index);
 protected abstract int rowAtPoint(Point point);

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

25

Because the tip is expanded horizontally outside the scroll pane, that's why it expected the
component can be sliced into rows. First, ExpandedTip will install a mouse motion listener and
call rowAtPoint to find out which row the mouse is on. We called it row but it doesn't have to be
row. For the JList, it will be the row; For the JTree, it will be the tree node; for a text area or code
editor, it could be the line. Then getRowBounds will be called to figure out if the bounds is larger
than the visible bounds. If it is smaller, do nothing as it means the content of the row is fully
visible. If the bounds is larger than the visible bounds, ExpandedTip will prepare a tip window
and paint the content that is outside the viewport of the scroll pane.

For example, let's say you have a large image JLabel inside a JScrollPane and the image is
only partially visible. You can write code like below.

JLabel imageLabel = new JLabel(an image);
new ExpandedTip<JLabel>(imageLabel){
 protected Rectangle getRowBounds(int index) {
 return new Rectangle(0,0, imageLabel.getWidth(), imageLabel.getHeight());
 }

 @Override
 protected int rowAtPoint(Point point) {
 return 0;
 }
 };

Node that I treat the whole thing as just one row and the row bounds is the whole label's
bounds. If you run the code, you will see the whole image is expanded outside the JScrollPane so
that you can see the whole image when the mouse is over it.

Navigation Components

Navigation Components are components that are designed to assist navigation in the user

interface. Navigation components are often displayed on the left hand side of the application to
help guide users to various items inside the application. Major Java IDEs and many other famous

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

26

applications such as Microsoft Outlook and iTunes do it this way. The navigation components
could be a list, a tree, or a table. However, in Swing, the regular JList, JTree and JTable are not
friendly enough to be used for the navigation purpose. For example, in JTree, the selection only
highlights the node. If the tree node is very narrow, the selection is barely noticeable. Or the
opposite when the tree node is very wide but the tree is narrow - the user can't see the whole
node except by scrolling it horizontally (or using the ExpandedTip feature described above). In
order to make these components more suitable for navigation, we changed their default
behavior and created three subclasses - NavigationList, NavigationTree and NavigationTable. All
three have a unique selection/rollover effect. The NavigationTree even has the tree icon fading
effect that you can find on Windows 7's File Explorer. If you happen to use JList, JTree or JTable
as your navigation components, you can replace them directly with these new components
without breaking the existing code.

NavigationList
NavigationList is a special JList that is designed for the navigation purpose. It has the

following features that are different from what JList has.

• It has row rollover effect. This feature gives user a clear indication of what will be
selected when he/she clicks.

• The row selection covers the whole row. This feature will show the selected item more
clearly. This feature is optional and can be turned off using setWideSelection(false).

• The selection highlight is different when focused and not focused. If several components
are used in the navigation area, this feature will allow user to find out which component
is currently active when they all have selection.

• It supports expanded tip so that content is still visible when the component is very
narrow. This is very important as in most cases the navigation area is narrow. This
feature is optional and can be turned off using setExpandedTip(false).

The selection and rollover effect is painted inside the paintComponent methods of the
NavigationList after the original list content is painted. We don't to use the cell renderer to paint
the effect as users might create their own cell renderer. However in order to prevent the cell
renderer from painting the default selection effect, we set a custom cell renderer that extends
DefaultListCellRenderer and pass in false for the cellHasFocus and isSelected parameter in when
calling getListCellRendererComponent method. If you have your own cell renderer, please make
sure you do the same thing.

NavigationTree
NavigationTree is a special JTree that is designed for the navigation purpose. It has the

following features that are different from what JTree has.

• It has row rollover effect. This feature gives user a clear indication of what will be
selected when he/she clicks.

• The tree icons will be hidden when the mouse is not over and the tree is not focused.
And it has fade effect when the mouse moves away from the tree. This feature is to

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

27

avoid the icons cluttering the user interface. This feature is optional and can be turned
off using setFadeIcon(false).

• The tree lines are hidden by default. This is again to avoid the cluttering of the user
interface. This feature is optional and can be turned off using setShowTreeLines(false).

• The row selection covers the whole row. This feature will show the selected item more
clearly. This feature is optional and can be turned off using setWideSelection(false).

• The selection highlight is different when focused and not focused. If several components
are used in the navigation area, this feature will allow user to find out which component
is currently active when they all have selection.

• It supports expanded tip so that node content is still visible when the component is very
narrow. This is very important as in most cases the navigation area narrow. This feature
is optional and can be turned off using setExpandedTip(false).

The selection and rollover effect is painted inside the paintComponent methods of the
NavigationTree after the original tree content is painted. We can't use the cell renderer to paint
the effect as it is beyond the bounds of the cell renderers. So in order to prevent the cell
renderer from painting the default selection effect, we override isRowSelected(int) method to
always return false. If your code depends on this method to find out if a row is selected, you can
use isRowSelectedOriginal(int) method.

NavigationTable
NavigationTable is a special JTable that is designed for the navigation purpose. It has the

following features that are different from what JTable has.

• It has row rollover effect. This feature gives user a clear indication of what will be
selected when he/she clicks.

• The row selection covers the whole row instead of each cell has selection individually in
the case of JTable.

• The selection highlight is different when focused and not focused. If several components
are used in the navigation area, this feature will allow user to find out which component
is currently active when they all have selection.

• It supports expanded tip so that content is still visible when the list is very narrow. This
is very important as in most cases the navigation area are narrow. This feature is
optional and can be turned off using setExpandedTip(false).

The selection and rollover effect is painted inside the paintComponent methods of the
NavigationTable after the original table content is painted. However in order to prevent the cell
renderer from painting the default selection effect, we override prepareRenderer method to
pass in false for both isSelected and hasFocus methods when getting the renderer component
from the cell renderers.

We have many table subclasses in JIDE Grids product. Unfortunately Java doesn't multiple
inheritance so we have to create NavigationSortableTable and NavigationTreeTable to archive

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

28

the navigation feature in SortableTable and TreeTable respectively. We could do it for all other
table subclasses but we think these two are more likely to be used for the navigation purpose.

BreadcrumbBar

Breadcrumbs are navigation aids used in user interfaces. They allow users to keep track of
their location within programs or documents. The term comes from the trail of breadcrumbs left
by Hansel and Gretel in the popular fairytale. Both Windows 7 and Mac OS X introduced
breadcrumb components in the file explorer and the finder respectively.

JIDE's BreadcrumbBar implements the breadcrumb component using Swing. To leverage the
existing Swing code, it uses the exactly the same TreeModel used in JTree as the model class.
The path displayed in the breadcrumb is simply the current TreePath. If you know how to setup
a TreeModel and are familiar with TreePaths, you will find it extremely easy to use the
BreadcrumbBar component.

BreadcrumbBar implements the breadcrumb user interface in Swing. To leverage the
existing code, it uses the exact TreeModel as used in JTree as the model class. The path
displayed in the breadcrumb can set or get using getSelectedPath and setSelectedPath. There is
a great advantage of using TreeModel as many applications already got TreeModel for the things
they want. For example, if you have a TreeModel that represents the file system, just set it to
BreadcrumbBar, you will get the same breadcrumb bar as you can find on Windows 7 or Vista's
file explorer.

COPYRIGHT © 2002-2011 J IDE SOFTWARE. ALL RIGHTS RESERVED

29

There are several segments in a BreadcrumbBar. In each segment, there are a node
component and a node separator.

Usually when you press the node separator, it will show a drop down menu which has the
children nodes of the node. But if you don't want to have such a drop down menu, you can
disable it using setDropDownAllowed(false).

When the drop down menu is shown, we change the icon from the left arrow to the down
arrow. Both icons can be changed using setNextIcon and setDropDownIcon respectively.

Custom Animation
CustomAnimation defines the basic attributes of an animation. Currently we support three

kinds of animations - fly, zoom, and fade - we call it effect. They all can be used during enter
and exit animation type.

There are a lot of options you can control how the animation looks like. Those options
include speed, smoothness (the number of frames in the animation, the more frame, the
smoother), and location. In the case of fly effect animation, you also have options such as
direction, start location, end location, function x and function y. Function x and function y here
are just like function in mathematics. Both functions together will define the path of the fly in or
fly out.

Here is an example. Say the animation will start at x coord 0 and end at x coord 100. To
make it simple, let's assume there are 100 steps in this animation. If you use linear functionX, it
will move steadily because in the linear function, calculate(step, totalStep) simply returns
((double) step) / totalStep. This means at step 1, move to x coord 1, at step 2, move to x coord 2
and so on. Now if you use pow2 function, it will move differently. FUNC_POW2 function returns
Math.pow((double) step / totalStep, 2.0). If you calculate manually, you will find it moves slowly
at the beginning and faster at the end. FUNC_POW_HALF function on the other hand will be
opposite. It will be faster at the beginning and slower at the end. Please note, this is just the
functionX which controls the movement on x coord. If the y coord of start and end location are
different, the y coord will change along with x coord change. Combining the both functionX and
functionY, it's possible to achieve any moving track as you want from the starting location to
end location.

Just to make it interesting, we pre-built FUNC_BOUNCE or FUNC_VIBRATE functions you can
use to create a bouncing or vibrating effect.

In the case of fade effect animation, you only have the option of end location as it stays at
the same location. However you do have a function to control the fade speed at different stage.
For example, if you choose FUNC_POW_HALF, it will fade faster at the beginning and slower at
the end. If you choose FUNC_POW2 or FUNC_POW3, it will be the opposite.

Internationalization Support
All of the Strings used in JIDE Components are contained in properties files as listed below.

com/jidesoft/swing/swing.properties

COPYRIGHT © 2002-2012 J IDE SOFTWARE, INC. ALL RIGHTS RESERVED

30

com/jidesoft/plaf/basic/basic.properties

com/jidesoft/status/status.properties

com/jidesoft/document/document.properties

com/jidesoft/pane/pane.properties

Some users contributes localized version of these files and we put those files inside jide-
properties.jar. If you want to support languages other than those we provided, just extract
those properties files, translated to the language you want, add the correct postfix and then jar
them back into jide-properties jar. You are welcome to send the translated properties file back
to us if you want to share it.

	Purpose of This Document
	What is JIDE Components
	Packages
	Document Pane
	Background
	What does a Tabbed-Document Interface look like?
	The User Interface
	The APIs
	The Document
	Document Group
	DocumentComponentEvent

	Persistence
	UI Defaults used by DocumentPane

	Status Bar
	StatusBar and StatusBarItem
	ProgressStatusBarItem
	LabelStatusBarItem
	ButtonStatusBarItem
	TimeStatusBarItem
	MemoryStatusBarItem
	ResizableStatusBarItem
	General Comments on StatusBar
	Size of StatusBarItem
	Border of StatusBarItem

	UI Defaults used by StatusBar

	CollapsiblePane
	Using several CollapsiblePanes as a group

	OutlookTabbedPane/FloorTabbedPane
	Alert
	BalloonTip
	Different balloon shape
	Shadow Style

	ExpandedTip
	Navigation Components
	NavigationList
	NavigationTree
	NavigationTable

	BreadcrumbBar
	Custom Animation
	Internationalization Support

