
JIDE Action Framework Developer Guide
Contents

PURPOSE OF THIS DOCUMENT .. 1

WHAT IS JIDE ACTION FRAMEWORK .. 1

PACKAGES .. 3

MIGRATING FROM EXISTING APPLICATIONS .. 3

DOCKABLEBARMANAGER ... 9

DOCKABLE BAR ... 10

MANIPULATE DOCKABLE BAR .. 11
DOCKABLE BAR EVENT ... 11

STYLES AND LOOK AND FEELS .. 12

AQUA LOOKANDFEEL AND MAC OS X .. 15
COMMANDBAR/CHEVRON UIDEFAULTS .. 16

PERSISTING LAYOUT INFORMATION .. 17

INTEGRATION WITH JIDE DOCKING FRAMEWORK .. 18

LAYOUT ... 18
BASE JFRAME CLASS ... 20

INTERNATIONALIZATION SUPPORT .. 23

Purpose of This Document
Welcome to the JIDE Action Framework, the product that can give your application’s toolbars and

menu bar more features and better look.

This document is for developers who want to develop applications using JIDE Action Framework.

What is JIDE Action Framework
Toolbar and menu bar are two very important UI components. Menu bar usually contains all

functionalities of the application. Toolbar provides easy access to some of the functionalities that are
available on menu bar as well. Though they look like two different UI components, they have so many

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

commonalities. For example, both are collections of actions. This is also the reason why we call this
product JIDE Action Framework. In JIDE Action Framework, we introduce a new component called
CommandBar. It will be the replacement for both menu bar and toolbar1.

An important part of JIDE Action Framework is to support several styles. Just like we introduced Visual
Studio .NET style in the release of JIDE Docking Framework, this time we introduce Office 2003 style along
with the release of JIDE Action Framework. Later, we also introduced several other styles such as Xerto
style, Office2007 style etc. See below for a screenshot of Office2003 style in different themes as well as
the Office 2007 styles with toolbar addition.

Figure 1 Office 2003 Style (in three themes) and Office 2007 Style

1 Why do we create a new component instead of reusing JToolBar and JMenuBar? The main reason is we want to
implement both components in the same way. If we kept them as separate components with a common class to
extend from, it will be hard to do so. In fact, CommandBar still extends JMenuBar.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

Packages
The table below lists the packages in the JIDE Action Framework.

Packages Description

com.jidesoft.action Action Framework related components and class, such as
CommandBar, DockableBar, DockableBarManager etc.

com.jidesoft.plaf L&F classes for components in Action Framework

Migrating from Existing Applications
Since most of you have already built toolbar and menu bar before the release of JIDE Action

Framework, we treated easy-to-migrate as a high priority when we designed the JIDE Action Framework.
This chapter will help you to understand the migration steps.

We assume you are using JToolBar and JMenuBar, the two Swing components. So the migration steps
below are based on this assumption.

In Swing, JToolBar and JMenuBar are two different components. However in JIDE Action Framework,
we used a single component to replace both of them. It is called CommandBar.

To help you understand what are in JIDE Action Framework, we prepared a table below describing the
relationship between Swing component and corresponding JIDE components. If you used any component
on the left side, replace them with the one on the right side when you migrate.

Swing JIDE

JMenuBar CommandMenuBar (extends CommandBar)

JToolBar CommandBar

JMenu JideMenu (JideMenu extends JMenu)

JMenuItem No change

JCheckBoxMenuItem No change

JRadioButtonMenuItem No change

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

JButton (only when it is used in JToolBar) JideButton (JideButton extends JButton)

JToggleButton (only when it is used in JToolBar) JideToggleButton

N.A. JideSplitButton (combination of button and
menu)

Except CommandBar and CommandMenuBar which are under com.jidesoft.action, all other
components listed in the table above such as JideButton, JideToggleButton, JideSplitButton are under
com.jidesoft.swing.

To show how easy it is to migrate, we used SwingSet2 demo which is included in any Java JDK demo
directory. To best demonstrate, please use Windows XP with XP theme on in order to see the new
Office2003 style. To make it easy for you, we included a modified version of SwingSet2 at “examples/A3.
SwingSet2”.

1. Open SwingSet2.java

2. Set the L&F and the Office2003 style at the beginning of SwingSet2 constructor.

 try {
 UIManager.setLookAndFeel(WindowsLookAndFeel.class.getName());
 }
 catch (ClassNotFoundException e) {
 }
 catch (InstantiationException e) {
 }
 catch (IllegalAccessException e) {
 }
 catch (UnsupportedLookAndFeelException e) {
 }

 LookAndFeelFactory.installJideExtension(LookAndFeelFactory.OFFICE2003_STYLE);

3. Replace all JMenuBar with CommandMenuBar (Whole Word Only, Case Sensitive)

4. Fix a compile error at setJMenuBar. Comment setJMenuBar out and add menuBar to toolbarPanel
which is used to add the old toolbar.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

5. After “CommandBar menuBar = new CommandMenuBar();”, add “menuBar.setStretch(true);”.
This method is not required but it will make it looks more like a menu bar. You can try not to call
this method and see what you get as an experiment.

6. Replace all JToolBar with CommandBar (Whole Word Only, Case Sensitive)

7. Replace all JButton which is used in toolbar with JideButton (Whole Word Only, Case Sensitive).
Actually in SwingSets, there is no such JButton.

8. Replace all JToggleButton which is used in toolbar with JideToggleButton (Whole Word Only, Case
Sensitive).

9. Now run SwingSet2 demo. See screenshot below.

Figure 2 SwingSet2 demo with CommandBar etc components

With just two minutes of work, you got a nice Office 2003
L&F toolbar and menu bar. Now only that, Try to make the
demo window smaller and see what happen. See screenshot on
the right side. Ah ha, the new toolbar can hide some buttons
when there is not enough space. You can still access those
hidden buttons by clicking the chevron at the end.

You might start to try to drag the grippers on the the new
toolbar and menu bar since they look very attractive. Hmm!
Nothing happened. Don’t worry. Let’s get to the next step.

Now you are using command bars from JIDE Action
Framework, but that’s not enough. If you put all command bar
into a manager, you will be able to drag and drop them. It is just
like JIDE Docking Framework.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

1. Good news is you don’t need to touch the two command bars you’ve created. All you need to do
is to give them a name. In the case of the old menu bar, you can specify it in the constructor.

CommandBar menuBar = new CommandMenuBar("Menu Bar").

In the case of the old tool bar, the easiest way is to change the old constructor and pass the name
to super.

 public ToggleButtonToolBar() {
 super("ToolBar");
 getContext().setInitIndex(1);
 }

2. Changes SwingSets class, making it extends ContentContainer and implements DockableBarHolder.

public class SwingSet2 extends ContentContainer implements DockableBarHolder {
…

3. Implements DockableBarHolder by adding the following code at the end of SwingSet2 class. We
will need this DockableBarManager to manage the two command bars we created.

 DockableBarManager _dockableBarManager;

 public DockableBarManager getDockableBarManager() {
 return _dockableBarManager;
 }

4. Let’s create DefaultDockableBarManager and add both command bars to it. All you need do is to
create DefaultDockableBarManager, add command bars to the manager instead of adding to
SwingSet2 panel directly. Instead of adding the content (the tabbed pane) directly to SwingSet2
panel, add it to the CENTER of getMainContainer() of the manager. It’s just like you did in JIDE
Docking Framework if you used it before.

 public void initializeDemo() {
 menuBar = createMenus();
 popupMenu = createPopupMenu();

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

 toolbar = new ToggleButtonToolBar();

 // DockableBarManager
 _dockableBarManager = new DefaultDockableBarManager(frame, this);
 _dockableBarManager.setProfileKey("swingset2");
 _dockableBarManager.addDockableBar(menuBar);
 _dockableBarManager.addDockableBar(toolbar);
 _dockableBarManager.getMainContainer().setLayout(new BorderLayout());

 tabbedPane = new JTabbedPane();
 _dockableBarManager.getMainContainer().add(tabbedPane, BorderLayout.CENTER);
 tabbedPane.getModel().addChangeListener(new TabListener());

 statusField = new JTextField("");
 statusField.setEditable(false);
// let's not add status field for now.
// add(statusField, BorderLayout.SOUTH);

 // after this, it’s the same as before.
 demoPanel = new JPanel();
….
 tabbedPane.addTab(
 getString("TabbedPane.src_label"),
 null,
 scroller,
 getString("TabbedPane.src_tooltip")
);
// till the end of the method, added
 getDockableBarManager().loadLayoutData();
}

5. Now let’s run it. It looks the same as last time we run. But if you drag the gripper of both
command bars, Yeah! It can be dragged now. You can make it floating, resizing the floating one, or
drag it back to north side or dock to three other sides etc.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

Figure 3 SwingSet2 demo using DockableBarManager

Isn’t it cool? Just in a few minutes, you convert SwingSet2 demo to use JIDE Action Framework. And all
of a sudden, SwingSet2 demo got the nice looking toolbar and menu bar. They match the style of Office
2003 application and they can be dragged and dropped, floated, and closed. In fact, it is just like a native
window application. Now keep the SwingSet2 demo running, go to your Windows XP Display Property and
change the theme to the other theme such as default blue theme, you will see SwingSets demo changes
too. You are using the theme technology we implement. In fact, you have total control on look and feel
and we will cover it in a section later.

Figure 4 SwingSet2 demo with XP blue theme

Now, I hope you are ready to jump in and migrate your application to JIDE Action Framework and
give your application a nice look.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

DockableBarManager
If you worked with JIDE Docking Framework before, this chapter will sound familiar.

You may wonder why the manager is called DockableBarManager not CommandBarManager. It’s a
good question. CommandBar is not the base class. DockableBar is. CommandBar extends DockableBar.
Right now CommandBar is the only one that extends DockableBar. However we will have more in the
future. The base class that works with DockableBarManager is the DockableBar, that’s why we called it
DockableBarManager.

The easiest way to get start with DockableBarManager is to make your JFrame extending
DefaultDockableBarHolder. You can refer to A1.SampleWord as an example. What if you are already using
JIDE Docking Framework and your JFrame already extends DefaultDockableHolder? If so, please use
DefaultDockableBarDockableHolder which allows you to use both Docking Framework and Action
Framework. A2. SampleVsnet is such an example which uses both frameworks.

You will create your CommandBar somewhere else. Once you have them ready, you just need to add
them to DockableBarManager by calling _frame.getDockableBarManager.addDockableBar().

 // add command bar
 _frame.getDockableBarManager().addDockableBar(…);
 _frame.getDockableBarManager().addDockableBar(…);
 _frame.getDockableBarManager().addDockableBar(…);
 _frame.getDockableBarManager().addDockableBar(…);

The ContentPane of JFrame is set to BorderLayout automatically. DockableBarManager will take
over the CENTER of the ContentPane. You can still use NORTH or SOUTH or WEST or EAST of the
ContentPane. For example, for status bar, you can add it to SOUTH.

 // add status bar
 _statusBar = createStatusBar();
 _frame.getContentPane().add(_statusBar, BorderLayout.AFTER_LAST_LINE);

For those components you used to add to the CENTER of JFrame’s ContentPane, now you need to
add them to the MainContainer of DockableBarManager which you can get by calling
_frame.getDockableBarManager.getMainContainer().

 _documentPane = createDocumentTabs(); // the components in the center
 _frame.getDockableBarManager().getMainContainer().setLayout(new BorderLayout());

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

10

 _frame.getDockableBarManager().getMainContainer().add((Component) _documentPane,
BorderLayout.CENTER);

At the end, call loadLayoutData() to load layout data from either javax preference or . If there is
no layout saved previously, it will place the DockableBars at their default location.

 _frame.getDockableBarManager().loadLayoutData();

Dockable Bar
Similar to DockableFrame, DockableBar also has a context which you can set the initial position and

state.

There are several methods you can use to set the initial default setting: setInitMode(), setInitSide()
and setInitIndex() or setInitSubindex. For example, if you want to put the dockable bar to the south side,
you just need to set the init side to DOCK_SIDE_SOUTH. Here are the possible combinations of those
values:

initMode InitSide initIndex initSubindex Comments

STATE_HORT_DOCKED DOCK_SIDE_NORTH
DOCK_SIDE_SOUTH

The row
index. Any
integer
greater than
0

The start x Dockable bars with
the same initIndex
will be on the same
row.

STATE_VERT_DOCKED DOCK_SIDE_EAST
DOCK_SIDE_WEST

The column
index. Any
integer
greater than
0

The start y Dockable bars with
the same initIndex
will be on the same
column.

STATE_FLOATING N/A N/A N/A The location is
specified
undockedBounds.
Leave width and
height as 0 to use the
preferred size.

STATE_HIDDEN N/A N/A N/A

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

Here is a typical code to initialize a DockableBar. The code below will create a dockable bar on south
side and at row index 0 (the first row) and start x is 100.

 public static CommandBar createDrawingCommandBar() {
 CommandBar commandBar = new CommandBar("Drawing");
 commandBar.getContext().setInitSide(DockableBarContext.DOCK_SIDE_SOUTH);
 commandBar.getContext().setInitIndex(0);
 commandBar.getContext().setInitSideSubindex(100);
 ……
 }

Manipulate Dockable Bar
Once the dockable bars have been added to DockableBarManager, the DockableBarManager will

manage them based on the user’s keyboard and mouse action. They can either be shown or hidden and
they may also be docked, or floating. All these operations are done through the DockableBarManager.
Here are some commonly used methods on DockableBarManager:

showDockableBar(): Show a dockable bar

hideDockableBar(): Hide a dockable bar

toggleState(): Toggle between floating state and docked state.

dockDockableBar(final DockableBar f, final int side, final int row, final boolean createNewRow, final
int start): dock dockable bar at the specified side, row and start location. If the side is north or south, start
is the x coordinate. If the side is east or west, start is the y coordinate.

floatDockableBar(final DockableBar f, final Rectangle bounds): float dockable bar at the specified
bounds.

Please refer to the DockableBarManager javadoc for more details.

Dockable Bar Event
We support twelve events that are specific to dockable bar.

n DOCKABLE_BAR_ADDED: when DockableBar is added to DockableBarManager.

n DOCKABLE_BAR_REMOVED: when DockableBar is removed from DockableBarManager.

n DOCKABLE_BAR_SHOWN: when showDockableBar is called on the DockableBar.

n DOCKABLE_BAR_HIDDEN: when hideDockableBar is called on the DockableBar.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

12

n DOCKABLE_BAR_HORI_DOCKED: when DockableBar changes from other states to
HORI_DOCKED state.

n DOCKABLE_BAR_VERT_DOCKED: when DockableBar changes from other states to
VERT_DOCKED state.

n DOCKABLE_FRAME_FLOATING: when DockableBar changes from other states to
FLOATING state.

Styles and Look And Feels
Our products always come with modern styles to match with existing look and feels. Our first product

JIDE Docking Framework’s interface concept was based on Visual Studio .NET. Since then, the user
interface changed a lot. First, Windows XP introduced a new theme which overhauled the look and feel of
Windows. Then Microsoft Office 2003 is released with fully support of XP style and its Office 2003 style
addition. Since then Office 2003 style because a new style that everyone wants to follow. Unfortunately
before the release of JIDE Action Framework, there is no public library available to have such an L&F style
using Swing. To fill in this obvious gap, along with the introduction of JIDE Action Framework, we introduce
the Office 2003 LookAndFeel.

In this release, we include all four themes for Office 2003 style. They are the same as Windows XP -
Blue, HomeStead2, Silver and Gray. It’s very easy to add your own color theme. We will expose it later
after it gets stabilized in a few releases. In addition to the four standard themes, there is another theme
we called it Default theme. Different from the four standard themes which defined their own color
palette, this Default theme derived all colors from existing UIDefaults such as “control”, “controlShadow”.
So if you are using Windows classic style L&F (not XP) and a color theme other than “Windows Standard”
on Windows display property, Default theme will be the preferred one to use.

We also added the CommandBar related UI classes for the original Vsnet L&F and Eclipse L&F. There
are also UI classes for Metal L&F and Aqua L&F. For other third party L&Fs, you can always use one of the
existing UI classes and tweak them to fit in the style of that L&F. Please refer to LookAndFeelFactory.java
for more details. In that class, we add code to tweak two famous L&Fs - JGoodies Plastic3D L&F and Alloy
L&F. Later, we also introduced Office 2007 style to match with the theme of Microsoft Office 2007.

2 Also know as Oliver Green. HomeStead is the name used internally

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

If you choose Windows L&F + Office 2003 style, you will get seamless integration on Windows XP.
When user changed the system theme from Blue to Silver for example on Windows XP, your application
will change theme with it3.

On the other hand, we also enhanced JIDE Docking Framework to have Office 2003 L&F

JideTabbedPane, DockableFrame and SidePane. See below for an example of a sample application that
mimics Microsoft Word and another sample application that mimics Visual Studio .NET. Both samples, of
course, used JIDE Action Framework.

Figure 5 Sample application mimicking MS Word

3 We leave the native integration as an option. You can turn it on or off using
Office2003Painter.setNative(true/false). A save way to do this is to call
Office2003Painter.setNative(SystemInfo.isWindowsXP()) so that it only uses native on XP.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

14

Figure 6 Sample application mimicking Visual Studio .NET under Office 2007 style

It is also very easy to use those look and feels. All you need to do is to set the base L&F such as
Windows, or Metal or Aqua. After that, call LookAndFeelFactory.installJideExtension(). In the case of
multiple styles to choose from, you also need to pass in the style as parameter. The following code will set
the L&F to Windows and use Office 2003 style.

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 // to add additional UIDefault for JIDE components
 LookAndFeelFactory.installJideExtension(LookAndFeelFactory.OFFICE2003_STYLE);

If the base L&F is Windows L&F, there are three styles you can choose from. They are VSNET_STYLE,
OFFICE2003_STYLE and ECLIPSE_STYLE respectively.

For OFFICE2003_STYLE, there are four build-in themes. They are BLUE, HOMESTEAD, METALLIC and
GRAY. The constants are all defined in XPUtils. The following code will set to BLUE theme.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

((Office2003Painter) Office2003Painter.getInstance()).setColorName(XPUtils.BLUE);
// update all UIs
frame.getDockableBarManager().updateComponentTreeUI()

Aqua LookAndFeel and Mac OS X
We also support Mac OS X using Aqua LookAndFeel. See the screenshot below.

Figure 7 Aqua LookAndFeel on Mac OS X

Mac OS X has a special menu bar called screen menu bar. JIDE Action Framework supports it too. To
get the screen menu bar, you need to make sure

1. You set the system property “apple.laf.useScreenMenuBar” to “true”. You can do it either use –D
in the command line or call System.setProperty() in your code.

2. You need to make sure you can use CommandMenuBar when you create the CommandBar which
you want to use as menu bar. 4

4 The reason we emphasize this is because under other L&Fs, you can create a CommandBar instance first, then call
setMenuBar(true). However under Aqua L&F, you must create CommandMenuBar instance directly or you will get a

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

16

CommandBar menuBar = new CommandMenuBar(“Menu Bar”);

Once you use the screen menu bar, JIDE Action Framework will lose the control over that menu bar
(even though you did call addDockableBar to DockableBarManager just like other CommandBars.) User
can’t drag the menu bar like before. This beats the purpose of JIDE Action Framework. However this is
exactly what Mac OS X users will expect.

CommandBar/Chevron UIDefaults
Name Type Description

CommandBar.font Font The font for CommandBar

CommandBar.background Color The background of CommandBar

CommandBar.foreground Color The foreground of CommandBar

CommandBar.border Border The border for CommandBar when it is docked horizontally

CommandBar.borderVert Border The border for CommandBar when it is docked vertically

CommandBar.borderFloating Border The border for CommandBar when it is floating

CommandBar.titleBarSize Integer The title bar height

CommandBar.titleBarBackground Color The title bar background

CommandBar.titleBarForeground Color The title bar foreground

CommandBar.titleBarFont Font The font for CommandBar’s title bar.

CommandBar.minimumSize Dimension The minimum size of a ComamndBar

CommandBar.separatorSize Integer The separator width (or height if vertically)

CommandBarSeparator.background Color The separator’s background

CommandBarSeparator.foreground Color The separator’s foreground

Chevron.size Integer The width (or height if vertically) of the Chevron

Chevron.alwaysVisible Boolean If there is no hidden components on CommandBar, should
the Chevron be visible?

ClassCastException during application startup. To be safe, we always recommend you to use CommandMenuBar for
CommandBar which you will use as menu bar. This way will work under all L&Fs.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

17

Persisting Layout Information
JIDE Action Framework offers the ability to save the exact position of dockable bar information

between sessions, using the javax.utils.pref package. This means that under Windows, the information will
be stored in the registry, while under UNIX, it will be stored in a file in your home directory.

All layout data are organized under one key called the ‘profile key’. This can be any string, but usually
it’s your company name (we use “jidesoft” in our sample application). You should call setProfileKey(String
key) to set this key when your application starts up.

Under the profile key, there is a name for each layout configuration. The configuration supports
multiple sets of window positions, and can also be used for storing other information, such as user
preferences. Thus, when John runs your application, he doesn’t have to use the same window layout that
Jerry used. The default set of preferences lies under the key “default”, and is used whenever
loadLayoutData() and saveLayoutData() are called to persist the window state.

If you prefer to specify the configuration, then loadLayoutDataFrom(String layoutName) and
saveLayoutDataAs(String layoutName) will persist the window state under the key profileName. This is
what you would use for the user preferences example above, or for distinct projects or workspaces, etc.

getLayoutRawData() and setLayoutRawData(String layoutData) are methods allowing you get the
layout data as a byte[], in case you want to load/save it without using javax.util.pref.

If you prefer that JIDE Action Framework use a file, rather than the registry, then simply use
loadLayoutDataFromFile(String filename) and saveLayoutDataToFile(String filename). The filename
param is, as you would expect, the destination of the configuration data.

Another option you have is to let JIDE Action Framework use its default file location. By default it uses
javax.util.pref to store layout information. However if you prefer disk storage, but want JIDE to manage
the location, you can call setUsePref(false) to disable using javax.util.pref. Your layout data will be stored
at {user.home}/.{profileName}, where profileName is either “default” or your profile name as specified
above. If you want to specify where to store the layout data, you can call setLayoutDirectory(String
dirName). Please note, the directory will be used only when setUsePref is false. You also need to make
sure you call set those values (i.e. setProfileKey(), setUsePref(), setLayoutDirectory()) before you call any
loadLayout or saveLayout methods.

Once you decide to use preference or save as file, you can use several methods to check if a layout is
available or get a list of all layouts saved before. isLayoutAvailable(String layoutName) will tell you if a
layout is available. getAvailableLayouts() will return you a list of layout names. removeLayout(String
layoutName) will remove the saved layout.

Each stored layout has a version number assigned. If the returned version doesn’t match the expected
value then the layout information will be discarded. For example, if your application has changed a lot
since it was last released to users, you may not want the user’s old layout information to be used. You can
just call setVersion(short) to set the framework to a new version. This means that when a user runs your
application, the previously stored layout information will not be used.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

18

You can switch between layouts at any time and each layout can have a different set of dockable
frames. In order to function correctly, you need to call beginLoadLayoutData() first and then call
addDockableBar() or removeDockableBar(). In the end, you should call one of the loadLayoutData()
methods to load the layout. Please note that if you add a frame between calling beginLoadLayoutData()
and loadLayoutData(), the frame will not be visible until loadLayoutData() is called. However if you add a
frame before calling beginLoadLayoutData() or after loadLayoutData(), then the frame will be visible
immediately.

Usually the user wants the main window’s bounds and state (as in JFrame.setExtendedState() or
JFrame.setState() for JDK1.3 and below) to be part of the layout information so that the information can
be persistent across sessions. This means that when you switch layout, not only is the layout of dockable
window reloaded but also the location and size of the main window. If you wish, you can disable this
default behaviour of saving the main window’s bounds and state by calling setUseFrameBounds(boolean)
and setUseFrameState(boolean).

Integration with JIDE Docking Framework
We’ve addressed some points in chapters above. However we will discuss further in this chapter.

Layout
Both JIDE Action Framework and JIDE Docking Framework need to persist layouts. However when you

use both frameworks, you don’t want to save two layout files.

All methods related to layout are exactly the same in both frameworks. This is enforced because both
DockingManager and DockableManager extend a common class called AbstractLayoutPersistence. In
order to use both frameworks as one unit, we introduced a new class called LayoutPersistenceManager.
This guy can manage multiple instance of LayoutPersistence.

If you want to use both frameworks, we recommend you to use DefaultDockableBarDockableHolder
as your JFrame. This class will create LayoutPersistenceManager automatically and expose it through
getLayoutPersistence() method.

// add dockable bar to DockableBarManager
_frame.getDockableBarManager().addDockableBar(…);
_frame.getDockableBarManager().addDockableBar(…);
_frame.getDockableBarManager().addDockableBar(…);
…

// add dockable frame to DockingManager
_frame.getDockingManager ().addFrame(…)
_frame.getDockingManager ().addFrame(…)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

19

_frame.getDockingManager ().addFrame(…)
…

// instead of using getDockingManager() or getDockableManager() to load layout
// use getLayoutPersistence() instead.
// _frame.getDockingManager().loadLayoutData();
// _frame.getDockableBarManager().loadLayoutData();
_frame.getLayoutPersistence().loadLayoutData();

In short, you should call all layout related methods from getLayoutPersistence() instead of using
DockingManager or DockableBarManager. For the list of methods related to layout, you can look at the
javadoc of LayoutPersistence.

Is there any case that you still should call to DockingManger or DockableBarManager for the layout
related methods? Yes. Below is such an example.

When recovering from autohide all, we just need to restore the layout of DockingManager. So we
need to store the layout of DockingManager by calling getDockingManger().getLayoutData(). See the two
lines in red.

 JMenuItem item = new JMenuItem("Toggle Auto Hide All");
 item.setMnemonic('T');
 item.addActionListener(new AbstractAction() {
 public void actionPerformed(ActionEvent e) {
 if (!_autohideAll) {
 _fullScreenLayout = frame.getDockingManager().getLayoutRawData();
 frame.getDockingManager().autohideAll();
 _autohideAll = true;
 }
 else {
 // call next two methods so that the farme bounds and state will not change.
 frame.getDockingManager().setUseFrameBounds(false);
 frame.getDockingManager().setUseFrameState(false);
 if (_fullScreenLayout != null) {
 frame.getDockingManager().setLayoutRawData(_fullScreenLayout);
 }
 _autohideAll = false;
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

20

 }
 });
 menu.add(item);

Base JFrame class
In JIDE Docking Framework, we have a JFrame class called DefaultDockableHolder. You can use this

class to replace your JFrame and it can automatically provide the function of dockable windows. In JIDE
Action Framework, we also have a JFrame class call DefaultDockableBarHolder. It can provide function of
command bars. What if you want both dockable window and command bar? Since there iss no multiple
inheritances in Java, you can not extend both DefaultDockableHolder and DefaultDockableBarHolder. We
have to introduce a new class called DefaultDockableBarDockableHolder. So if you want to use both JIDE
Action Framework and JIDE Docking Framework, use DefaultDockableBarDockableHolder as your JFrame.

The screenshot below illustrates the relationship of each area when using both frameworks. The area
in the red rectangle is managed by JIDE Docking Framework. The area between red rectangle and green
rectangle are managed by JIDE Action Framework. If you use DefaultDockableBarDockableHolder, this is
what you get.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

21

Figure 8 Use both JIDE Docking Framework and JDE Action Framework

If for some reasons, you can’t use the three base JFrames we provide, you still need to make sure your
JFrame has the necessary functions that the base JFrame has.

1. Allocate the contentContainer for DockingManager and DockableBarManager.

2. Make sure the DockingManager and DockableBarManager are initialized.

// Create ContentConatiner. You can use JPanel but ContentContainer will give you a nice
// gradient under Office2003 style
Container contentContainer = new ContentContainer();
getContentPane().setLayout(new BorderLayout());
getContentPane().add(contentContainer, BorderLayout.CENTER);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

22

_dockableBarManager = new DefaultDockableBarManager(this, contentContainer);

_dockableBarManager.getMainContainer().setLayout(new BorderLayout());
Container dockingManagerContentContainer = new JPanel();
dockingManagerContentContainer.setOpaque(false);
_dockableBarManager.getMainContainer().add(dockingManagerContentContainer,
BorderLayout.CENTER);

_dockingManager = new DefaultDockingManager(this, _ dockingManagerContentContainer);

3. If you need to use both frameworks, create LayoutPersistenceManager and add both
DockingManager and DockableManager to it.

 _layoutPersistence = new LayoutPersistenceManager();
 _layoutPersistence.addLayoutPersistence(getDockableBarManager());
 _layoutPersistence.addLayoutPersistence(getDockingManager());

4. If you use DockableBarManager, make sure you override getJMenuBar() method.

 /**
 * Override in DefaultDockableBarHolder to return the menu bar in DockableBarManager.
 *
 * @return the menubar for this frame
 */
 public JMenuBar getJMenuBar() {
 if (getDockableBarManager() != null) {
 Collection col = getDockableBarManager().getAllDockableBars();
 for (Iterator iterator = col.iterator(); iterator.hasNext();) {
 DockableBar bar = (DockableBar) iterator.next();
 if (bar instanceof CommandBar && ((CommandBar) bar).isMenuBar()) {
 return bar;
 }
 }
 }
 return super.getJMenuBar();

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

23

 }

Internationalization Support
All Strings used in JIDE Action Framework are contained in one properties file called action.properties

under com/jidesoft/action. Some users contributed localized version of this file and we put those files
inside jide-properties.jar. If you want to support languages other than those we provided, just extract this
properties file, translated to the language you want, add the correct postfix and then jar it back into jide-
properties jar. You are welcome to send the translated properties file back to us if you want to share it.

	Contents
	Purpose of This Document
	What is JIDE Action Framework
	Packages
	Migrating from Existing Applications
	DockableBarManager
	Dockable Bar
	Manipulate Dockable Bar
	Dockable Bar Event

	Styles and Look And Feels
	Aqua LookAndFeel and Mac OS X
	CommandBar/Chevron UIDefaults

	Persisting Layout Information
	Integration with JIDE Docking Framework
	Layout
	Base JFrame class

	Internationalization Support

