
JIDE Pivot Grid Developer Guide
Contents

PURPOSE OF THIS DOCUMENT .. 2

PIVOT TABLE BASIC .. 2

OVERVIEW ... 3

DATA SOURCE .. 3

PREPARE THE TABLE MODEL ... 3

CALCULATED COLUMNS .. 3
GROUPING VALUES.. 5
CACHEDTABLEMODEL .. 5

PIVOT DATA MODEL ... 6

FIELDS IN PIVOTDATAMODEL .. 6

PIVOT TABLE .. 7

SORT AND FILTER FIELDS ... 8
REARRANGE FIELDS.. 8
TOTALS AND SUMMARIES ... 9

ADVANCED FEATURES .. 12

CUSTOMIZED CELL RENDERERS .. 12
CUSTOMIZE CELL STYLES ... 14
DATA EDITING .. 16
DATE CALCULATION AND AUTO-UPDATE .. 17
FILTERING .. 17

PIVOTDATASOURCE ... 18

PERSISTENT THE PIVOT LAYOUT AS XML DOCUMENT ... 18

PERFORMANCE OF PIVOTDATAMODEL ... 18

AGGREGATETABLE ... 20

DIFFERENCE FROM PIVOTTABLEPANE .. 22

APPENDIX: EXPRESSION FOR EXPRESSIONCALCULATEDCOLUMN .. 23

LITERAL VALUES AND DATA FIELD REFERENCES ... 23
OPERATORS AND CONTROL FLOW .. 24
MATHEMATICAL FUNCTIONS ... 25
STRING FUNCTIONS ... 27

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

Purpose of This Document
JIDE Pivot Grid is a Java/Swing implementation of pivot table. This developer guide is

designed for developers who want to learn how to use JIDE Pivot Grid in their applications.

JIDE Pivot Grid heavily depends on features and components provided by JIDE Grids. So if
you never used JIDE Grids before, we strongly recommend you read JIDE Grids Developer Guide
first or at least refer to it while reading this developer guide.

Pivot Table Basic
A pivot table enables you to take what seems to be an indecipherable mass of facts and

extract any trends and patterns buried in the data. You can organize and summarize your data,
perform comparisons, and extract meaningful information that can be invaluable to you and
your organization.

Microsoft® Office Excel and many other analytics applications provided pivot table feature.
Below is a screenshot of pivot table in Excel. You can also play with Excel yourself and see how
powerful a pivot table is. Once you‘ve done that, you will start to think if you can have it in your
Swing application. That’s where JIDE Pivot Grid comes to help.

Figure 1 PivotTable in Microsoft® Office Excel

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

Overview
In order to add a pivot table to your applications, there are several steps you need to follow.

Here is the flow. We will cover each step in details.

Data Source
You may read your data from any data sources such as a database table, a file, a piece of

data in memory. The data should be in tabular format that can be converted to TableModel as
defined in Java Swing. From JIDE Pivot Grid point of view, the only data it will accept is the
TableModel. As long as you convert your raw data to TableModel, you can use it in JIDE Pivot
Grid.

Prepare the Table Model
Pivot table provides a way to analysis the data. However, what you can actually get out of

the pivot table is depending on your knowledge of the data. So after you convert your row data
to a TableModel, most likely you need to customize the table model to add more columns and
convert some columns that you will need in pivot table.

Calculated Columns
Frequently, you find the data in your table model doesn’t contain all the columns you need.

For example, your table model contains a shipped date column. However you are interested in
the quarter value of the shipped date so that you can generate a quarterly report. Or, your table
model contains quality and unit price columns but you are interested in the total amount which
can be calculated as quality * unit price. With the help of calculated columns, you can easily add
new columns to do what mentioned above.

CalculatedColumn is the interface for a calculated column. The main method in this interface
is

Object getValueAt(int rowIndex);

This method will calculate on fly the value for the calculated column. Another method is

int[] getDependingColumns();

This method will tell us what columns the calculated column depends on. It is important to
know because when the depending columns’ value changed, we know we should recalculate the
calculated column.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

In order to use CalculatedColumn, you need CalculatedTableModel. CalculatedTableModel
wraps the underlying table model to create a new table model so that you can add and remove
columns.

CalculatedTableModel calculatedTableModel = new CalculatedTableModel(tableModel);

The code above will create a CalculatedTableModel. However it’s empty at this point. You
need add columns to it. You can add all the columns in the underlying table model to the
CalculatedTableModel. Here is how.

calculatedTableModel.addAllColumns();

Just so you know, you don’t have to add all the columns but just pick those columns that
you will use in the pivot table. The less columns, the more efficient will be the calculation of
pivot table data. There are many things we can do to this CalculatedTableModel. Before jumping
in, let’s talk more about CalculatedColumn.

On top of CalculatedColumn, there is AbstractCalculatedColumn which implements all
methods in CalculatedColumn except the two methods we mentioned above – getValutAt and
getDependingColumns. We also have SingleColumn which you can use if the calculated column
depends on only one column in the underlying table model. Then we have
ExpressionCalculatedColumn which allows you to write a simple expression for the calculated
column. For example [Quality] * [unitPrice] is the expression you can write for the example we
used above.

To add a single column, you can call

calculatedTableModel.addColumn(new SingleColumn(tableModel, 0)

This line will add the first column in tableModel to CalculatedTableModel. Please note the
second parameter is the column index in the underlying table model.

You can also use AbstractCalculatedColumn directly. See below. We create a new column
which doubles the sales value which is the 3rd column in the underlying table model.

 calculatedTableModel.addColumn(new AbstractCalculatedColumn(tableModel, "Double Sales", Float.class) {

 public Object getValueAt(int rowIndex) {
 Object valueAt = getActualModel().getValueAt(rowIndex, 2);

 if (valueAt instanceof Float) {
 return ((Float) valueAt).floatValue() * 2;

 }

 return "--";
 }

 public int[] getDependingColumns() {
 return new int[]{2};

 }

 });

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

The value change in CalculatedTableModel is transparent. In the other words, whenever the
underlying table model’s cell value changes, CalculatedTableModel will update its value
automatically. That’s because we have the getDependingColumns() method in CalculatedColumn
interface.

There is also a more complex way to define a CalculatedColumn using Expression. Please
refer to “Expression for CalculatedColumn” section at the end of this document.

Grouping Values
You can group a range of values into one value so that the resulting column has less number

of unique values. This is very important in pivot table because too many unique values will not
only increase the memory needed to hold all the data but also causes noise because of the small
variation in the data. For example if you have an Age column, you can group it into 0 to 18, 18 to
30, 30 to 50 etc groups. For 5-digit U.S. zip code, you can group them by the first two digits
which will roughly tell you where the zip code is. For product name, you may want to group
them aphetically into the product names beginning with A, beginning with B etc. See below for
such an example.

 SingleColumn column = new SingleColumn(tableModel, "ProductName");

 column.setObjectGrouper(new ObjectGrouper() {
 public Class getType() {

 return String.class;

 }

 public Object getValue(Object value) {

 String name = value.toString();
 return name.substring(0, 1);

 }

 public String getName() {

 return "Alphabetical";
 }

 });

ObjectGrouper is the interface that calculates group value from a value. You can define
many ObjectGrouper and register them with ObjectGrouperManager. If you use JIDE
ObjectConverter before, this is the same mechanism as ObjectConverterManager.

AbstractCalculatedTableColumn defined a method setObjectGrouper(ObjectGrouper). Once
you set a ObjectGrouper, the value of this column will be grouped.

CachedTableModel
Now you see some advanced features provided by CalculatedTableModel and the

ObjectGrouper, you might start to worry about the performance as the values are calculated on
fly. You are right. If the calculation is complex, you will face the performance issue. To address
this problem, we introduce CachedTableModel. A the name indicates, it will cache the values
that is returned from getValueAt(int row, int column). So next time when getValueAt is called

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

again, it will return the cached value instead of calculating it again. The CachedTableModel is
smarted enough to recalculate the value only when the underlying table model changes and
only when getValueAt is called. And again, this is completely transparent to you.

Pivot Data Model
PivotDataModel is the main data structure for pivot table. It will convert a tabular data such

as TableModel to pivot data.

The constructor of PivotDataModel can take any table model.

PivotDataModel pivotDataModel = new PivotDataModel(tableModel);

PivotDataModel is the data model that contains all we need in order to create a pivot table.
As you can see from the code above, it can take any table model (including the
CalculatedTableModel or CachedTableModel as we introduced above) as the input data and
calculate pivot data so that Pivot Grid component can use it.

Fields in PivotDataModel
Each column in the TableModel is automatically become a field in PivotDataModel. There

are four types of fields – row fields, column fields, filter fields1 and data fields.

You can call getField(String columnName) to get a field. The columnName is the column
name in TableModel. Hopefully you make them unique in your TableModel. In fact, you can also
call getField(int index) to get a field if you know the index. However in most cases, you refer to a
field by name, so getField(String columnName) is used more often.

pivotDataModel.getField("CategoryName").setAreaType(PivotField.AREA_ROW);

pivotDataModel.getField("CategoryName").setAreaIndex(1);
pivotDataModel.getField("CategoryName").setTitle("Category Name");

pivotDataModel.getField("CategoryName").setSubtotalType(PivotField.SUBTOTAL_AUTOMATIC);

The four line above configured “CategoryName” field. It makes this field a row field. The
index is set to 1 which usually means it is the first field in row areas. It also changes the display
title to more user friendly “Category Name” instead of “CaregoryName”. The last line said we
want to calculate subtotal for the field.

pivotDataModel.getField("ProductSales").setAreaType(PivotField.AREA_DATA);
pivotDataModel.getField("ProductSales").setSummaryType(PivotField.SUMMARY_SUM);

pivotDataModel.getField("ProductSales").setAreaIndex(1);
pivotDataModel.getField("ProductSales").setTitle("Sales");

pivotDataModel.getField("ProductSales").setConverterContext(CurrencyConverter.CONTEXT);

1 In Excel, filter field is called page field.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

The five lines above configured “ProductSales” field. As you can see, it’s a data field. As sales
is dollar amount, we set ConverterContext to use CurrentyConverter so that it displays a
currency symbol in front of the numeric value. If you don’t know what a Converter is, you can
refer to JIDE Grids Developer Guide for more information.

pivotDataModel.getField("Year").setAreaType(PivotField.COLUMN);
pivotDataModel.getField("Year").setConverterContext(YearNameConverter.CONTEXT);

pivotDataModel.getField("Year").setAreaIndex(1);
pivotDataModel.getField("Year").setSubtotalType(PivotField.SUBTOTAL_CUSTOM);
pivotDataModel.getField("Year").setCustomSubtotals(new int[]{PivotField.SUMMARY_STDDEV,
PivotField.SUMMARY_SUM});
pivotDataModel.getField("Quarter").setAreaType(PivotField. COLUMN);

pivotDataModel.getField("Quarter").setConverterContext(QuarterNameConverter.CONTEXT);
pivotDataModel.getField("Quarter").setSubtotalType(PivotField.SUBTOTAL_CUSTOM);
pivotDataModel.getField("Quarter").setCustomSubtotals(new int[]{PivotField.SUMMARY_STDDEV,
PivotField.SUMMARY_SUM, PivotField.SUMMARY_MAX});
pivotDataModel.getField("Quarter").setAreaIndex(2);
pivotDataModel.getField("Month").setAreaType(PivotField.COLUMN);

pivotDataModel.getField("Month").setConverterContext(MonthNameConverter.CONTEXT);
pivotDataModel.getField("Month").setAreaIndex(3);

The lines above configured “Year”, “Quarter” and “Month” fields as column fields. From the
area index values, we can tell the “Year” is the first one, then “Quarter” and the last is “Month”.
So it looks like we create the pivot table in order to analysis sales data by the
year/quarter/month.

pivotDataModel.setShowGrandTotalForColumn(true);

pivotDataModel.calculate();

Pivot Table
Once you have PivotDataModel configured and calculated, you are ready to display it in

PivotTablePane, the main component for JIDE Pivot Grid.

PivotTablePane pivotTablePane = new PivotTablePane(pivotDataModel);

PivotTablePane is a component that you can add it anywhere in your application. As you can
see below, each pivot table divides into eight areas – row field area, column field area, filter
field area, data field area, row header area, column header area, data area and field chooser
area.

Filter field area is the first area on top. It contains a number of fields. Each field has a drop
down button to bring up a check box list. User can check or uncheck them to include or exclude
the value. You will see the change automatically in the pivot when user makes the changes.

Data field area is the one right below Filter field area. It lists what fields are used as data
fields.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

Row field area is the one above the row header table. Column field area is the one above
the column header table. They list what fields are used as row and column fields respectively.

There are actually three sub-tables in the body part of pivot table. The row header area
contains the row header table. The column header area contains the column header table. The
middle is the data table. The two scroll bars will synchronize those tables as if they are one
table.

As last, PivotTablePane have a field chooser area. All fields that are not in filter field area,
row header area, column header area or data field area are in this area. You can use this area to
add the fields to the four other areas.

There are many things user can do to this table. Let’s take a look.

Sort and Filter Fields
Each field is represented as a field box in filter field area, row field area, column field area

and data field area of a pivot table. As you can see, each field box has three parts – the name,
the sort arrow and a filter drop down button. You can click on the field box to toggle sorting.
You can also click on filter drop down button to change the filter. Please note, not only you can
change filter on filter fields as assumed, but also you can change filter in row fields and column
fields.

Rearrange Fields
You can also drag and drop the field box. Just grab any field, you will see a gesture indicating

it is dragged.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

If you move mouse slowly to different areas while holding the mouse left button, you will
see indication of different drop area. See screenshot below, if you drag to the column field area,
you see a black rectangle. It means if you drop now, the Product Name will be set to column
field and put between Year and Quarter fields.

Here is what you get.

By drag-n-dropping, user can easily rearrange fields among the four field areas. In order to

add a new field, user will need the field chooser area. As mentioned earlier, all columns in the
table model become a field in pivot data model. Most fields are assigned as filter field, data
field, row fields columns fields. For those unassigned fields, they will appear in field chooser
area. Fields in field chooser area can be dragged as well. It can also take dragged fields from the
four field areas.

The pivot table is updated immediately whenever the layout is changed. So user can what
data table looks like and decides if the current layout is the one they want.

Totals and Summaries
JIDE Pivot Grid supports grand total on row and column fields. It can display a grand total

row or column at the end of the data area. You can call setShowGrandTotalForColumn(boolean)
and setShowGrandTotalForRow(boolean) methods on PivotDataModel.

Figure 2 Grand Total

JIDE Pivot Grid also supports subtotals on row or column fields. It will appear as one extra
row or column after each field in row header table or column header table.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

10

Figure 3 Subtotal Row

You can also customize it to show a different subtotal type either through UI or code. User
can right click on a field and select “Field Settings…” then choose which subtotals they want to
see.

Figure 4 Subtotal Row

There are several settings user can set from this dialog.

l Subtotal: Subtotal is used for row and column fields. User can select automatic subtotal
which will be Sum. Or they can pick Custom subtotal and select one or several statistics
they want to calculate. See below for the area in red.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

User also has the option to display different subtotal for row fields and column

fields. See below.

l Summary: Summary is also a kind of statistic just like those used in subtotal except this

is only used when the field is a data field. For example, if you look at the following
screenshot, the value in the red rectangle is actually a sum of several values in the
original table model. It shows as sum because we selected Sum as the default statistics
for Sales data field.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

12

Not only user can configure those, you as a developer can also write code to do it using APIs.

The method is setSubtotalType on PivotField. If the value is PivotField.SUBTOTAL_CUSTOM,
setCustomSubtotals method will allow you to set the custom subtotals as user can set using the
check box list in the dialog above. PivotField#setSummaryType is to change the last combobox in
the dialog above.

Advanced Features

Customized Cell Renderers
In Pivot Table, each field usually one contains data of one type. You can provide your own

converter2 to convert from the data type to string so that it can be displayed in the cell.

The screenshot above actually shows three different types of converters. The first one is

CurrencyConverter which converts from a double or float to a string with $ prefix. Inside the
converter, it simply uses NumberFormat.getCurrencyInstance() to do the conversion. The
second one is a MonthNameConverter which converts an int with value from 0 to 11 to the
Month name. The third one is a QuarterNameConverter which converts from 0 to 3 to a string

2 Converter is referred to ObjectConverter. Please read JIDE Grids Developer Guide for more information.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

like “Qtr 1”, “Qtr 2”, etc. If you are familiar with JIDE Grids, you will know we have a manager
called ObjectConverterManager where you can register the ObjectConverters.
ObjectConverterManager already contain a lot of converters for common data types. If you
need more, you can always register it yourself. See code below where we register several
converters we mentioned above to ObjectConverterManager.

 CurrencyConverter converter = new CurrencyConverter();

 ObjectConverterManager.registerConverter(Double.class, converter, CurrencyConverter.CONTEXT);

 ObjectConverterManager.registerConverter(double.class, converter, CurrencyConverter.CONTEXT);
 MonthNameConverter monthNameConverter = new MonthNameConverter();
 ObjectConverterManager.registerConverter(Integer.class, monthNameConverter,
MonthNameConverter.CONTEXT);
 ObjectConverterManager.registerConverter(int.class, monthNameConverter, MonthNameConverter.CONTEXT);

 QuarterNameConverter quarterNameConverter = new QuarterNameConverter();

 ObjectConverterManager.registerConverter(Integer.class, quarterNameConverter,
QuarterNameConverter.CONTEXT);

 ObjectConverterManager.registerConverter(int.class, quarterNameConverter,
QuarterNameConverter.CONTEXT);

You may notice we use CurrencyConverter.CONTEXT, MonthNameConverter.CONTEXT and
QuarterNameConverter.CONTEXT when we registered the converters. The reason we need the
context so that we can register several converters for the same data type. For example both
MonthNameConverter and QuarterNameConverter convert int type.

In order to tell PivotField to use certain converter, you just call setConverterContext on it.
See code below.

 pivotDataModel.getField("Year").setConverterContext(YearNameConverter.CONTEXT);

 pivotDataModel.getField("Quarter").setConverterContext(QuarterNameConverter.CONTEXT);
 pivotDataModel.getField("Month").setConverterContext(MonthNameConverter.CONTEXT);

Setting ConverterContext should be enough for most of the data types that need to be
displayed as string. However, there are still cases that you need to use a customized cell
renderer. For example, you want to display a percentage using a color bar. Obviously a
converter is not enough. In this case, you can use setEditorContext3 method on PivotField. See
code below where we register a PercentageCellRenderer and tell PivotField to use it.

 PercentageCellRenderer percentageCellRenderer = new PercentageCellRenderer();

 CellRendererManager.registerRenderer(int.class, percentageCellRenderer, PercentageCellRenderer.CONTEXT);
 pivotDataModel.getField("Percentage").setEditorContext(PercentageCellRenderer.CONTEXT);

3 You may wonder why we named the method setEditorContext, not setRendererContext. The reason is EditorContext
is an old concept in JIDE Grids which we use for both cell editor and cell renderer. We called EditorContext to cover
both cases. In Pivot Table, the cells are not editable so only renderers will be used. However we still want to keep the
name EditorContext just to be compatible with JIDE Grids.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

14

Customize Cell Styles
Customizing cell styles sounds very similar to customize cell renderers but in fact they are

two different aspects of making the data cells easier for users to read. The cell style concept
again comes from JIDE Grids where there is CellStyleTable which you can use a StyleModel to
customize the cell background, foreground, font, border, alignments etc without touching the
cell renderers.

In Pivot Table, PivotDataModel has a method called setCellStyleProvider. In this provider,
you can provide CellStyle for data table, column header table and row header table respectively.
Let’s see an example.

First, let’s define some CellStyles as constants to make it efficient.

 static CellStyle HIGH_STYLE = new CellStyle();

 static CellStyle LOW_STYLE = new CellStyle();
 static CellStyle SUMMARY_STYLE = new CellStyle();

 static CellStyle DEFAULT_STYLE = new CellStyle();
 static CellStyle HEADER_STYLE = new CellStyle();

 static {

 HIGH_STYLE.setForeground(Color.WHITE);
 HIGH_STYLE.setBackground(Color.RED);

 LOW_STYLE.setForeground(Color.BLACK);

 LOW_STYLE.setBackground(Color.YELLOW);

 SUMMARY_STYLE.setForeground(Color.BLACK);

 SUMMARY_STYLE.setBackground(new Color(255, 255, 215));

 DEFAULT_STYLE.setForeground(Color.BLACK);

 DEFAULT_STYLE.setBackground(Color.WHITE);

 HEADER_STYLE.setFontStyle(Font.BOLD);
 HEADER_STYLE.setForeground(Color.BLACK);
 }

Basically, we want to display summary row or column using SUMMARY_STYLE which has a
yellow background. Then for cells that have lower or higher than normal value, we use a
different color background. Last for all headers such as row header or column, we want to use
bold font.

In setCellStyleProvider method, we had

 pivotDataModel.setCellStyleProvider(new PivotCellStyleProvider() {

 public CellStyle getDataTableCellStyleAt(DataTableModel model, HeaderTableModel rowHeaderModel,
HeaderTableModel columnHeaderModel, int rowIndex, int columnIndex) {
 if (rowHeaderModel.isSubtotalRow(rowIndex) || columnHeaderModel.isSubtotalRow(columnIndex)
 || rowHeaderModel.isGrandTotalRow(rowIndex) ||
columnHeaderModel.isGrandTotalRow(columnIndex)) {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

 return SUMMARY_STYLE;

 }
 else {
 Object value = model.getValueAt(rowIndex, columnIndex);

 if (value instanceof Double && ((Double) value).doubleValue() > 10000) {
 return HIGH_STYLE;

 }

 else if (value instanceof Double && ((Double) value).doubleValue() < 50) {
 return LOW_STYLE;

 }
 else {
 return DEFAULT_STYLE;

 }

 }

 }

 public CellStyle getColumnHeaderCellStyleAt(HeaderTableModel model, int rowIndex, int columnIndex) {

 return HEADER_STYLE;
 }

 public CellStyle getRowHeaderCellStyleAt(HeaderTableModel model, int rowIndex, int columnIndex) {
 return HEADER_STYLE;

 }
 });

Here is what you get.

As you can see, with a few lines of code, you customized the cell styles to make result much

easier to read.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

16

Data Editing
PivotTable is usually read-only because the data table shows the summary of several rows in

the original table model. If user tries to edit the data table directly, it is not clear how to modify
the original table model to reflect the data change. In order to solve this problem, we introduce
PivotDataEditingProvider. See the interface below.

public interface PivotDataEditingProvider {
 /**

 * Returns true if the cell at <code>rowIndex</code> and

 * <code>columnIndex</code> of the DataTableModel in PivotDataModel
 * is editable. Otherwise, <code>setValueAt</code> on the cell will not

 * change the value of that cell.
 *

 * @param dataModel the pivot data model.
 * @param rowIndex the row whose value is to be queried
 * @param columnIndex the column whose value is to be queried

 * @return true if the cell is editable
 */
 boolean isCellEditable(PivotDataModel dataModel, int rowIndex, int columnIndex);

 /**

 * This method is called when user changes the the value in the cell at <code>columnIndex</code> and

 * <code>rowIndex</code> to <code>aValue</code>. You should implement this method and modify the
 * corresponding cell or cells in data source so that the change can be persisted.

 *
 * @param dataModel the pivot data model.

 * @param aValue the new value
 * @param rowIndex the row whose value is to be changed

 * @param columnIndex the column whose value is to be changed

 * @see #isCellEditable
 */
 void setValueAt(PivotDataModel dataModel, Object aValue, int rowIndex, int columnIndex);

}

The purpose of this interface is to let you to decide how to apply the data change from the
data table to the underlying table model. You can use isCellEditable method to determine which
cell is editable. If a cell is editable and user changes the value, the value will be passed to
setValueAt method. You can decide how to accept the new value.

There are three on PivotDataEditingProvider on PivotDataModel. They are for the data
table, row header table and column header table respectively.

We also introduced PivotEditingProvider which is a higher level abstraction. This is an
interface that further simplifies the data editing to just three basic operations – addRow,
removeRow and setValueAt. These three operations are on the original table model. If you are
using DefaultTableModel, you can pretty much delegate to the three same-name methods on
DefaultTableModel. We even made DefaultPivotEditingProvider for it. If not, you will have to
implement the three methods yourself using AbstractPivotEditingProvider.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

17

When user edits a cell in the data table (or row header table and column header table),
PivotEditingProvider will find the rows behind the cell and change values for all the rows. You
can also add a button to your user interface which will call addRow or removeRow method of
PivotEditingProvider if user needs to add and remove rows from the original table model.

Date Calculation and Auto-update
The calculation from the data in the original table model to the data displayed in the pivot

table is a complex process. It is done in PivotTableModel#calculate() method. If the original table
model has a huge number of rows, calculate() could take several minutes or even longer.

Although in most cases, pivot table is used to do static data analysis. However, we notice
many customers use it to do real-time data analysis. That is the data in the original table model
changes constantly. If every change requires the calculate() to be called to update the display, it
is certainly not acceptable. To solve this problem, we introduce a flag in PivotDataModel. If you
call PivotDataModel#setAutoUpdate(true), we will listen to the TableModelEvent fired in the
original table model and update the pivot data incrementally. The result is instead taking a few
minutes to do calculate(), it will only take a few seconds to when a row in the original table
model is added, deleted or modified. If the event is a large scale event such as
tableDataChanged or tableStructureChanged, we will still call calculate(). So if you should fire a
few small scale events, please do that instead of firing one large scale event. Saying that, you
many need to do some experiments in order to find out the best solution. For example,
calculate() takes one minute and each row updated event takes 1 second. If 900 out of 1000
rows are updated at one time, you probably should fire tableDataChanged instead of firing 900
tableRowUpdated events because 1 minute is less than 900 seconds.

Filtering
We already mentioned user can click on the filter button on the fields (except data field) to

uncheck the value from the CheckBoxList popup to do filtering. There is of course one way to
filter data. However this filtering is done after PivotDataModel processed all the data. As you
may know, if you have a huge data, PivotDataModel’s calculate() method will spend a lot of time
to read and calculate the pivot data. In the other word, the user filtering way doesn’t help to
relieve the burden on PivotDataModel at all.

We would like to introduce a class called FilterableTableModel, a class in JIDE Grids, to
combine use with PivotDataModel. Here is how it works.

FilterableTableModel filterModel = new FilterableTableModel(tableModel)
filterModel.addFilter(…);

filterModel.refresh();
PivotDataModel pivotModel = new PivotDataModel(filterModel);

As you can see, instead of passing the tableModel, which is huge, directly to
PivotDataModel, we piped it to FilterableTableModel first. You can add many filters to
FilterableTableModel. The refresh() method will filter away all unnecessary rows so that
PivotDataModel sees a table model which has much less rows. A typical use case is to use fitler
to filter away incomplete or obviously wrong data. People sometimes called it data cleansing.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

18

PivotDataSource
As Pivot Table could potentially deal with large amount of data, it is important to optimize

how the data is retrieved and filtered. Obviously the most used storage for large data source is
still the database. All databases have the index feature which makes the filter a lot faster than
our FilterableTableModel. This is the reason we introduced PivotDataSource interface.

PivotDataSource is very similar to TableModel interface. By introducing this interface, it is
possible to use any compatible data as the data source for PivotDataModel. PivotDataSource
also provides methods related to filtering. If you use this interface, you can totally skip the
FilterableTableModel we used internally in PivotDataModel. If you can provide a more efficient
filtering engine to implement this interface in the right way, it could make the pivot table faster.

Persistent the Pivot Layout as XML Document
PivotTablePersistenceUtils is the class that can save PivotTablePane as xml file and load

them back. The reason we didn’t build this feature into PivotTablePane itself but provide a
separate class for it is because we think you might have your own to persistent it as xml format
in your application.

All methods on PivotTablePersistenceUtils are static. There are several overload load()
methods which can load shortcut definition from an xml file, or InputStream, or Document
(org.w3c.dom.Document). You can also load shortcut definition from multiple files by setting
“append” parameter to true in the load() method.

The save() method will save shortcut definition as Document or file. Please note save()
method will use classes XMLSerializer and OutputFormat. Those two classes are part of
xerces.jar before but now they are also part of JDK5. If you are using JDK5 and above, there is
nothing you need to do. However if you are still using JDK1.4.2 or below, you need to include
xerces.jar in your classpath. Otherwise you will get NoClassDefFoundError during runtime.

Performance of PivotDataModel
As PivotDataModel deals large amount of data, the performance is a very important factor

for consideration. We did some benchmark (based on JIDE release 2.2.2). See table below.

You can do this performance test yourself. We used PivotTableDemo.java as the test case.
You change one line in DemoData.java createProductReportsTableModel method to add more
rows. For example, if the value of the loop is 1000 instead of 1, there will be 2082 * 1000 rows.

Vector[] data = DemoData.getProductReportsData(1, maxRows);

This result is tested on a Dell XPS 600, Windows XP, Intel Pentium D 3.00GHz CPU, 2GB RAM.
Actual result could vary on your computer.

of rows 2082 20,820 208,200 2,082,000 10,410,000 20,820,000

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

19

Original Table memory (in
KB for comparison)

~* 185 2,984 21,333 84,249 168,135

Extra memory (in KB) ~* 1,145 5,906 53,577 266,723 546,876

calculate() (in ms) 47 156 1,032 9,797 45,406 111,656

* We used Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() to find out how much extra memory is

used. It is not very accurate and the best way which is why we couldn’t measure the memory usage of the 2082-row case correctly.

As you can see from the table above, the time increases linearly with the number of rows.
The performance gets bad once there are more than 2 million rows with around 10 seconds. As
calculate() is called for many UI operations (such as add, remove or rearrange a field, apply a
filter), it means that’s time that user will have to wait for those operations.

The calculate() method spent about half of the total time reading the data from the original
TableModel. The rest of time is spent on adding the row keys and column keys to a map. So the
speed of TableModel.getValueAt() has a large impact on the performance. In fact, in
PivotTableDemo, we used CalculatedTableModel. It is slower as we have to calculate the month,
year and date from a Date object. If your table model uses DefaultTableModel, the performance
could be better than this performance test.

The more row and column fields, the slower is calculate().

The initial startup time is just one aspect of the performance. After the pivot table is
initialized, when you scroll up and down to view the pivot table data, the performance is again
determined by the TableModel.getValueAt(). You can use CachedTableModel class we
mentioned earlier to boost. However this will add to the initial startup time because it has to
prepare a cache for the cell values. It will also increase the memory consumption. Use it with
caution.

PivotDataModel pivotDataModel = new PivotDataModel(new CachedTableModel(tableModel));

Subtotal and grand total cells also make the viewing the table slower. It is because the time
takes to collect all the values of the data fields that match with the sub or grand total condition.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

20

AggregateTable
Before introducing AggregateTable, let’s look at a SortableTable. See below.

Figure 5 A TableModel

As you can see, it is a pretty large table model. There are many cells with the same value in
CategoryName and ProductName columns. You can find see that once we sort the first column
and the second column. See below. As we used JIDE Grids SortableTable which supports
multiple sorted columns, we can see those same value cells.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

21

Figure 6 A Table Model with the first column sorted

After you look at this sorted table, you will start to think that maybe we can use CellSpan to
group the same value cells to make it easier to read. Or we can even collapse the CellSpan to
save space. That’s exactly the reason for AggregateTable.

See below for an example which is the aggregate table for the table model above. In this
case, we aggregated on CategoryName and ProductName columns.

Figure 7 AggregateTable

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

22

As the name indicated, AggregateTable aggregates cells of the same value into one cell span
and add +/- button to those aggregated cell. You can decide which columns to aggregate. See
below for an example code.

 AggregateTable aggregateTable = new AggregateTable(tableModel);
 aggregateTable.aggregate(new String[]{"CategoryName", "ProductName"});

Internally, we will create a PivotDataModel to do the calculation just like in PivotTablePane.
However we represent the calculation result through a new AggregateTableModel class which is
then used by AggregateTable.

Difference from PivotTablePane
Even though AggregateTable is built on top PivotDataModel and both of them can use the

same TableModel as data source, PivotTablePane and AggregateTable are used for two totally
difference purpose.

PivotTablePane is used to display summaries of the original data. User usually doesn’t care
too much about the original data but cares more about the statistical summary of the original
data. In fact, there is no way see the original data through the PivotTablePane UI. Sometimes
user doesn’t even know what kind of information in the original data and wants to use
PivotTablePane as an experimental tool to analysis the data.

AggregateTable is used to display the original data in an aggregated view. Each value in the
original data will find its place in AggregateTable. User (or developer) also knows beforehand
what columns are in the table model so that they can decide which columns are aggregated
columns. For example, CategoryName and ProductName can be used as aggregate columns. If
you try to aggregate on the Sales column, it probably doesn’t make any sense.

Even though it looks like a regular Table, AggregateTable is actually a special pivot table.
You can view it as a pivot table without column fields. Aggregated columns are row fields and
non-aggregated columns are data fields. To prove this statement, here is a screenshot of the
same TableModel in PivotTablePane. You can compare the two screenshots to see the
difference.

Note that the cells in the data table actually summaries. For example, the first Sales cell

$1065.60 is actually Summary of three values. You can see them in the table below. Other three

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

23

cells don’t display any information is because the data type and converter context don’t match
with the summary type.

Appendix: Expression for ExpressionCalculatedColumn
In the current release, we leveraged an expression parser from an open source project

called prefuse (http://prefuse.org). Prefuse is a visualization toolkit which has nothing to do with
JIDE Pivot Grid. However since they have an expression parser which is exactly what we need,
we just use it for now until we decide to make one on our own. Prefuse is released under the
BSD (Berkeley Standard Distribution) license, making it free to use for both commercial and non-
commercial purposes.

What we need is a way to calculate a value from the value of an existing column. Let’s use
the same example we used before. Your table model contains quality and unit price columns but
you are interested in the total amount which can be calculated as quality * unit price. If you are
writing java code to do it, you can certainly use AbstractCalculatedColumn class and do the
calculation in your code. However if you want to expose this feature to your end user who
doesn’t know how to write javadoc, you will have to use this ExpressionCalculatedColumn.

calculatedTableModel.addColumn(new ExpressionCalculatedColumn(tableModel, "Amount", " [Quality] *
[UnitPrice]"));

Below is the detailed document adapted from prefuse’s javadoc.

Literal Values and Data Field References
The fundamental building blocks of the expression language, representing data values.

Boolean literals (TRUE, FALSE)

The boolean literals representing true and false conditions, parsed to type boolean

Integer literals (1, -5, 12340)

Undecorated, non-decimal numbers are parsed as numbers of type int

Long literals (1L, -5L, 12340L)

http://prefuse.org)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

24

Integer values decorated with the suffix "L" are parsed as numbers of type long

Double literals (1.0, 3.1415, 1e-35, 2.3e6)

Numbers with decimals or exponents in scientific notation are parsed as numbers of type
double

Float literals (1.0f, 3.1415f, 1e-35f, 2.3e6f)

Floating-point values decorated with the suffix "f" are parsed as numbers of type float

String literals ("some text", 'a label')

Text strings placed in double (") or single (') quotations are parsed as String literals

Null literal (null)

The string null is parsed as an ObjectLiteral of type null.

Data field references (_strokeColor, [a data field])

Free-standing strings or those placed within brackets are parsed as a reference to the data
field of that name. Brackets are required for any fields that include spaces or other unusual
characters in their name (e.g., characters like +, -, *, etc), or conflict with an existing keyword
For example, true parses to a boolean literal while [true] parses to a reference to a data field
named 'true'.

Operators and Control Flow
Basic operators and control flow structures for the expression language.

x + y (addition)

Add x and y

x - y (subtraction)

Subtract y from x

x * y (multiplication)

Multiply x and y

x / y (division)

Divide x by y

x ^ y (exponentiation, pow)

Raise x to the exponent y

x % y (modulo)

Return the remainder of x divded by y

x = y, x == y (equality)

Indicates if x and y are equal

x != y, x <> y (inequality)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

25

Indicates if x and y are not equal

x > y (greater than)

Indicates if x is greater than y

x >= y (greater than or equal to)

Indicates if x is greater than or equal to y

x < y (less than)

Indicates if x is less than y

x <= y (less than or equal to)

Indicates if x is less than or equal to y

x AND y, x && y (and)

Indicates if both x and y are true

x OR y, x || y (or)

Indicates if either x or y is true

NOT x, !x (not)

Indicates if the negation of x is true

x XOR y (exclusive or)

Indicates if one, but not both, of x or y is true

IF test THEN x ELSE y (if-then-else)

Evaluates the predicate test, and if true evaluates and returns the expression x, and if false
evaluates and returns the expression y

() (parentheses)

Groups expressions together to enfore a particular order of evaluation. For example, 1+2*3
evaluates to 7, while (1+2)*3 evaluates to 9.

Mathematical Functions
Functions for performing mathematical calculations.

ABS(x)

Returns the absolute value of x

ACOS(x)

Returns the inverse cosine (arc cosine) of a x

ASIN(x)

Returns the inverse sine (arc sine) of a x

ATAN(x)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

26

Returns the inverse tangent (arc tangent) of a x

ATAN2(y, x)

For the Cartesian coordinates x, y return the polar coordinate angle theta

CEIL(x), CEILING(x)

Returns the nearest integer value greater than or equal to x.

COS(x)

Returns the cosine of x

COT(x)

Returns the cotangent of x

DEGREES(x)

Converts x from radians to degrees

EXP(x)

Returns the value of e (the base of natural logarithms) raised to the x power

FLOOR(x)

Returns the nearest integer value less than or equal to x.

LOG(x), LOG(b, x)

With one argument, returns the natural logarithm (logarithm base e) of x

With two arguments, returns the logarithm of x for the provided base b

LOG2(x)

Returns the logarithm base 2 of x

LOG10(x)

Returns the logarithm base 10 of x

MAX(a, b, c, ...)

Returns the maximum value among the provided arguments

MIN(a, b, c, ...)

Returns the minimum value among the provided arguments

MOD(x, y)

Returns x modulo y (the remainder of x divided by y)

PI()

Returns the constant π (= 3.1415926535...), the ratio between the circumference and
diameter of a circle

POW(x, y), POWER(x, y)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

27

Return the value of x raised to the exponent y

RADIANS(x)

Converts x from degrees to radians

RAND()

Returns a random floating-point value between 0 and 1

ROUND(x)

Returns the value of x rounded to the nearest integer

SIGN(x)

Returns the sign of x: 1 for positive, -1 for negative

SIN(x)

Returns the sine of x

SQRT(x)

Returns the square root of x

SUM(a, b, c, ...)

Returns the sum of the provided input value

TAN(x)

Returns the tangent of x

SAFELOG10(x)

Returns a "negative safe" logarithm base 10 of x, equivalent to SIGN(x) * LOG10(ABS(x))

POW(x)

Returns a "negative safe" square root of x, equivalent to SIGN(x) * SQRT(ABS(x))

String Functions
Functions for processing text strings.

CAP(str)

Capitalize words in the string str. Individual words/names will be given uppercase first
letters, with all other letters in lowercase.

CONCAT(a, b, c, ...)

Concatenate the input strings into one resulting string.

CONCAT_WS(sep, a, b, c, ...)

Concatenate with separator. Concatenates the input strings into one resulting string, placing
the string sep between each of the other arguments

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

28

FORMAT(x, d)

Format the number x as a string of the type "#,###.##", showing d decimal places

INSERT(str, pos, len, newstr)

Replaces the substring of length len starting at position pos in input string str with the string
newstr

LEFT(str, len)

Returns the leftmost len characters of string str

LENGTH(str)

Returns the length, in characters, of the input string str

LOWER(str), LCASE(str)

Returns the string str mapped to lowercase letters

LPAD(str, len, pad)

Pad the left side of string str with copies of string pad, up to a total padding of len characters

MID(str, pos, len)

Return a substring of str of length len, starting at position pos

POSITION(substr, str)

Returns the starting position of the first occurrence of substring substr in the string str.
Returns -1 if the substring is not found.

REVERSE(str)

Returns a reversed copy of the input string str

REPEAT(str, count)

Returns a string consisting of str repeated count times

REPLACE(str, orig, replace)

Returns a copy of str in which all occurrences of orig have been replaced by replace

RIGHT(str, len)

Returns the len rightmost characters of stringstr

RPAD(x)

Pad the right side of string str with copies of string pad, up to a total padding of len
characters

SPACE(n)

Returns a string consisting of n whitespace characters

SUBSTRING(str,pos), SUBSTRING(str,pos,len)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

29

For two arguments, returns the substring of str starting at position pos and continuing to the
end of the string.

For three arguments, returns the substring of str of length len, beginning at position pos

UPPER(str), UCASE(str)

Returns the string str mapped to uppercase letters

	Contents
	Purpose of This Document
	Pivot Table Basic
	Overview
	Data Source
	Prepare the Table Model
	Calculated Columns
	Grouping Values
	CachedTableModel

	Pivot Data Model
	Fields in PivotDataModel

	Pivot Table
	Sort and Filter Fields
	Rearrange Fields
	Totals and Summaries

	Advanced Features
	Customized Cell Renderers
	Customize Cell Styles
	Data Editing
	Date Calculation and Auto-update
	Filtering

	PivotDataSource
	Persistent the Pivot Layout as XML Document
	Performance of PivotDataModel
	AggregateTable
	Difference from PivotTablePane

	Appendix: Expression for ExpressionCalculatedColumn
	Literal Values and Data Field References
	Operators and Control Flow
	Mathematical Functions
	String Functions

