
JIDE Grids Developer Guide
Table of Contents

PURPOSE OF THIS DOCUMENT .. 5

WHAT IS JIDE GRIDS ... 5

PACKAGES ... 5

CLASS HIERARCHY OF ALL THE JIDE TABLES .. 6

JIDETABLE .. 7

VALIDATION SUPPORT IN JIDETABLE ... 11

CELL LEVEL VALIDATION ... 11
TABLE LEVEL VALIDATION ... 12
ROW LEVEL VALIDATION ... 12
VALIDATIONRESULT ... 13

UNDO SUPPORT IN JIDETABLE .. 15

DEFAULTUNDOABLETABLEMODEL AND ABSTRACTUNDOABLETABLEMODEL ... 15
KEYSTROKES FOR UNDO AND REDO... 15

TRANSFERHANDLER ENHANCEMENT IN JIDETABLE .. 16

CONVERTER ... 16

CELLEDITORS AND CELLRENDERERS ... 19

NAVIGABLEMODEL AND NAVIGABLETABLE ... 23

CUSTOMIZE THE NAVIGATION KEYS ... 24

CELLSPANTABLE ... 25

CELLSTYLETABLE ... 30

AVAILABLE CELLSTYLES ... 32
WHERE TO DEFINE CELLSTYLE ... 32
CELLSTYLE MERGING ... 33

SORTABLETABLE ... 33

COMPARATOR .. 33
SORTABLE TABLE ... 34
SORTABLETABLEMODEL ... 34

As a developer, how do I use it... 35
How to Compare .. 36
The performance of SortableTableModel .. 36

FILTER AND FILTERABLETABLEMODEL ... 39

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

AUTOFILTERTABLEHEADER ... 39

TABLEMODELWRAPPER .. 41

COMPOUNDTABLEMODELEVENT .. 43

SORTABLE/FILTERABLE LIST AND TREE .. 43

SORTABLELISTMODEL AND SORTABLETREEMODEL .. 44
FILTERABLELISTMODEL AND FILTERABLETREEMODEL ... 44

MORE FILTERS AND CUSTOMFILTEREDITOR ... 45

FILTERFACTORYMANAGER .. 46
CUSTOMFILTEREDITOR ... 46
TABLECUSTOMFILTEREDITOR .. 48

PROPERTY PANE... 49

WHAT DOES A PROPERTYPANE LOOK LIKE? .. 50
AS A USER, HOW DO I USE IT? .. 52
AS A DEVELOPER, HOW DO I USE IT? .. 53

BEANPROPERTY AND BEANINTROSPECTOR ... 55

COLOR RELATED COMPONENTS .. 61

COLORCHOOSERPANEL .. 61
COLOR(EX)COMBOBOX.. 62
KEYBOARD SUPPORT .. 62

DATE RELATED COMPONENT .. 63

DATECHOOSERPANEL .. 63
DATE(EX)COMBOBOX.. 68
KEYBOARD SUPPORT .. 68
CALENDARVIEWER .. 69

COMBOBOX EXTENSION ... 70

AVAILABLE EXCOMBOBOXES ... 74
SUPPORTING 3RD PARTY L&F FOR EXCOMBOBOX... 77

HOW TO CREATE YOUR OWN CELL RENDERER AND CELL EDITOR .. 79

HIERARCHICAL TABLE ... 84

HIERARCHICALTABLEMODEL ... 85
HIERARCHICALTABLE .. 87
CONTAINER FOR CHILD COMPONENT .. 88
MAINTAINING SINGLE SELECTION .. 89
MIGRATION FROM HIERARCHICAL TABLE BETA VERSION ... 89

TREETABLE ... 91

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

COMPARISON BETWEEN TREETABLE AND HIERARCHICALTABLE ... 92

GROUPTABLE ... 94

GROUPABLETABLEMODEL .. 94
DEFAULTGROUPTABLEMODEL ... 94

GROUPLIST .. 98

GROUPABLELISTMODEL ... 98
LAYOUTORIENTATION .. 99

TABLESCROLLPANE ... 100

TABLESPLITPANE .. 102

DUALLIST ... 102

FEATURES OF DUALLIST .. 102
CLASSES, INTERFACES AND DEMOS ... 104
CODE EXAMPLES ... 104

DUALTABLE .. 105

FEATURES OF DUALTABLE ... 105
CLASSES, INTERFACES AND DEMOS ... 106
CODE EXAMPLES ... 107

TEXTFIELDLIST .. 108

FEATURES OF TEXTFIELDLIST ... 108

MAGIN AREA ... 109

MARGINSUPPORT AND ROWMARGINSUPPORT ... 109
CREATE YOUR OWN MARGIN .. 109
ROWNUMBERMARGIN .. 110
MARGINPAINTER AND LINEMARGINPAINTER ... 111
CODEFOLDINGMARGIN .. 112

MARKER AREA ... 113

MARKERSUPPORT ... 113
MARKER AND MARKERMODEL .. 114
MARKER EYE AND MARKER STRIPES.. 114
MARKERAREA .. 114

TABLEHEADERS .. 114

TABLE HEADER HIERARCHY ... 115
TABLEHEADERCELLDECORATOR ... 115
STYLEDLABEL POWERED TABLEHEADER ... 116
HEADERSTYLEMODEL AND CELLSTYLETABLEHEADER ... 117

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

TABLECELLEDITORRENDERER .. 117

TO BETTER INDICATE THE CELL IS EDITABLE .. 118
TO INTERACTIVE WITH MOUSE EVENTS ON THE CELL LEVEL ... 118

Hyperlink in Cell ... 118

INTERNATIONALIZATION AND LOCALIZATION ... 120

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

Purpose of This Document
Welcome to the JIDE Grids, the JTable extension product in JIDE Software’s product line.

This document is for developers who want to develop applications using JIDE Grids .

What is JIDE Grids
Believe it or not, JTable is probably one of the most commonly used Swing components in

most Swing applications.

Many people complained about the design of JTable. Every design has its pros and cons - so
does JTable. People have so many various kinds of requirements, so it’s really hard to design
such a complex component as JTable satisfying everybody’s needs. In our opinion, it’s not the
design of JTable is not good but it left out many important features that a table should have by
default. Good news is JTable does leave many extension points so that you can enhance it to
meet your needs. So as long as we keep improving it, it will get better and better - JIDE Grids is
one step toward this goal. All components in JIDE Grids are related to JTable and are fully
compatible with JTable.

In addition to JTable related features, we also included many features related to JList and
JTree.

Packages
The table below lists the packages in the JIDE Grids product.

Packages Description

com.jidesoft.grid All the JTable related components are in this package,
including PropertyTable, SortableTable, CellSpanTable,
CellStyleTable, TreeTable, HierarchicalTable,
SortableTableModel, and FilterableTableModel etc.

com.jidesoft.converter1 Converters that can convert from String to Object and from
Object to String.

com.jidesoft.comparator2 Comparators

com.jidesoft.grouper3 ObjectGroupers that can group many values into one group

1 This package is moved to jide-common.jar as other products also need converters.

2 This package is moved to jide-common.jar as other products also need comparators.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

to reduce the number of distinct values.

com.jidesoft.combobox ComboBox enhancement, such as DateExComboBox and
ColorExComboBox, etc. It is also possible to create your
own ComboBox

com.jidesoft.list SortableListModel, FilterableListModel and other classes
related to JList

com.jidesoft.tree SortableTreeModel, FilterableTreeModel and other classes
related to JTree

com.jidesoft.filter Filter related classes

com.jidesoft.lucene Filter related classes using Lucene

Class Hierarchy of All the JIDE Tables
Before we discuss each table component in detail, it’d be better to give you an overview of

them. See below for a class hierarchy of all the table components we have in JIDE Grids.

Figure 1 Class Hierarchy of Tables in JIDE Grids

As you can see, JideTable extends directly JTable since JideTable provides the features that
are supposed to be in JTable. Those features include nested table column header, table/row/cell
validation support, and automatic changing row height.

ContextSensitiveTable provides way to configure different cell renderers and cell editors for
each cell. Then it comes the NavigableTable which provides a way to define how the navigation

3 This package is moved to jide-common.jar as other products also need groupers.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

keys work in a table. Then it comes to CellStyleTable and CellSpanTable which provide two
commonly used features as the names indicated. Next is CategorizedTable. We will not cover
this table at all in this developer guide. The reason is we are not ready to expose it as public API
yet. Simply speaking, it provides access to the expand/collapse icon since both tree table and
hierarchical table need it.

After CategorizedTable, it’s SortableTable which supports multiple column sorting.

Till now, it’s still one line of hierarchy. After SortableTable, it divides into two types of
distinct tables. Each of them has its own special usage. One is TreeTable. PropertyTable is
actually a special use case of TreeTable. GroupTable is also a TreeTable. The other kind of table is
HierarchicalTable which is quite a unique table that is different from all other tables.

Generically speaking, you should make you table extending one of the last five tables
(SortableTable, HierarchicalTable, TreeTable, GroupTable or PropertyTable) in the class
hierarchy tree which are marked in a blue rectangle. However nothing prevents you from using
any other tables as long as you know exactly what features each table provides.

JideTable
Let’s start with JideTable which is the base class of all table classes in JIDE Grids. JideTable is

an extended version of JTable. The additional features we added are:

First, we enhanced CellEditorListener support. You can add a JideCellEditorListener to
JideTable. JideCellEditorListener extends CellEditorListener which is a Swing interface and adds
several methods. They are

editingStarting(ChangeEvent)
editingStopping(ChangeEvent)
editingStopped(ChangeEvent)

With these three methods, you can now do things like preventing cell from starting edit or
preventing cell from stopping edit.

The second feature is to support Validator4. You can add a Validator to JideTable. The
validating() method in Validator will be called before cell stops editing. If the validation failed,
the cell editor won't be removed. Please refer to Table Validation section for more information.

The third feature added to JideTable is the support of the listener for row height changes
when rows have various heights. You can add a listener by calling getRowHeights().

4 Validator and related classes are in package com.jidesoft.validation of jide-common.jar. Right now it is
only used in JideTable. However this is part of an infrastructure we will build that will cover all other
components which need validation.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

addRowHeightChangeListener(listener) A RowHeightChangeEvent will be fired whenever
setRowHeight(int row, int rowHeight) is called.

The fourth feature is the rowAutoResizes feature. By default, JTable's row height is
determined explicitly. It wouldn't consider the cell content preferred height. There is a problem
here if a cell renderer can support multiple lines. So we added a new attribute called
rowAutoResizes. By default, it's false which is exactly the same behavior as JTable. If you set to
true, the table row will resize automatically when cell renderer's preferred height changes.
Please note there is a performance hit if you turned it on as it has to check all cells to find out
the preferred row height. So only use it when it's really necessary.

The fifth feature is what we called nested table column. See a picture below which shows a
nested table header on Windows 7.

Figure 2 Nested table columns

Here is the code to create such a nested table column.

 // create nested table columns
 TableColumnModel cm = table.getColumnModel();
 TableColumnGroup first = new TableColumnGroup("Sum 1 - 4");
 first.add(cm.getColumn(0));
 first.add(cm.getColumn(1));
 first.add(cm.getColumn(2));
 first.add(cm.getColumn(3));
 TableColumnGroup second = new TableColumnGroup("Sum 5 - 9");
 second.add(cm.getColumn(4));
 second.add(cm.getColumn(5));
 second.add(cm.getColumn(6));
 second.add(cm.getColumn(7));
 second.add(cm.getColumn(8));
 TableColumnGroup all = new TableColumnGroup("Sum 1 - 9");
 all.add(first);
 all.add(second);
 NestedTableHeader header = (NestedTableHeader) table.getTableHeader();
 header.addColumnGroup(all);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

The sixth feature is non-contiguous cell selection. This is probably one of the oldest bugs5
that were reported to Sun Java back in 1998. In fact, it’s not that difficult to implement a
selection model that supports non-contiguous cell selection. We added the feature to JideTable.
To use it, you just call table.setNonContiguousCellSelection(true). Once you turn non-contiguous
cell selection on, you will have to use jideTable.getTableSelectionModel() to get a selection
model that keeps the selection. The old JTable’s getSelectionModel() is not used anymore in this
case.

Figure 3 NonConfiguousCellSelection

The seventh feature is the column auto-fit feature.

On Windows, if you double click on the gap between table header, the column will be
automatically resize to fit in the widest content in previous cell. JTable doesn’t have this feature.
So we added this to JideTable. You can call setColumnAutoResizable(true) to enable it. Similar to
this feature, we also added a function to TableUtils called autoResizeAllColumns(JTable table).
This method will automatically resize all columns to fit in the content in the cells. Good news
about this method is that it works for all JTable, not just JideTable.

From the screenshot below, you can see the Name column is narrow while Symbol etc.
columns are too wide.

5 See bug report at http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4138111.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4138111

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

10

After double click on the table header gap between the "Name" and the "Last", here is what
you will see. Please note the width of Name column is resized automatically to fit in the
contents of all cells in that column.

You can also resize all columns so that all columns are resized properly. See below.

The eighth feature is row resize and column resize. As you know, JTable supports column

resize only by dragging the table column header. And it doesn’t support row resize at all. It
would be nice if it can support resizing at the grid line. JideTable can support it. You just need to
call setColumnResizable(true) and setRowResizable(true) to enable column resizing and row
resizing respectively.

Here is how row resizing works.

Here is how column resizing works.

The ninth feature is a new AutoResizeMode called AUTO_RESIZE_FILL. In this mode, you

won’t see a blank area on the header area as the pictures below. The left picture is on

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

AUTO_RESIZE_OFF mode and the right picture is on AUTO_RESIZE_FILL mode along with
setFillRight(true), setFillBottom(true) and setFillsViewportWithStripe(true).

There are a few more small features in JideTable and we are also adding more when

needed. All these features should probably in JTable at the first place. That’s why we add them
to JideTable so that all JIDE tables can take advantage of them.

Validation Support in JideTable
JideTable has built-in validation support. The support is done on three different levels – cell,

row and table. You should decide which level to implement your validation logic depending on
your actual situation. Here are the details of three levels of validations.

Cell Level Validation
If the validation only depends on the cell value, such as if the number should be a positive

integer, or the string must have less than 10 chars, you should implement the validation on the
cell editor level. The JideCellEditor is an interface that has only one validate method (see below).
All cell editors provided in JIDE Grids implement this interface.

public interface JideCellEditor extends CellEditor {
 ValidationResult validate(Object oldValue, Object newValue);
}

Depending on what validation you need to perform, you can subclass the correct cell editor
and override this validate method to do the validation.

public class PositiveOnlyCellEditor extends NumberCellEditor {
 ValidationResult validate(Object oldValue, Object newValue) {
 if(newValue instanceof Integer && ((Integer) newValue).intValue > 0) {
 return ValidationResult.OK;
 }
 else {
 return new ValidationResult(false, "The number must be positive");
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

12

 }
}

Once you register this cell editor above on a cell (using either the old JTable way or
CellEditorManger way we described earlier), the cell will only accept positive integers.

Please note, the cell level validation can be used only when the validation logic doesn’t need
the values on other cells of this table. What if you do need? That’s where you need a table level
validation.

Table Level Validation
JideTable has addValidator(Validator) method to provide the validation logic on the table

level. You can add multiple Validators to the table. Those Validators will be called for all cells
when they stop editing. Just like Swing listener mechanism, those Validators are called in the
opposite order of they were added (that is, the first added Validator will be called at the last).
However different from listeners which will continue for all the listeners, if any of the Validators
retuned neither a null nor a ValidationResult.OK, the validation process will stop right there and
no more Validators will be called.

The only method on the Validator interface is the validating method. See below.

public interface Validator extends EventListener {
 ValidationResult validating(ValidationObject vo);
}

This is an interface shared by other JIDE components. But in the case of JideTable, the
ValidationObject is an instance of TableValidationObject. TableValidationObject has methods
such as getRow and getColumn so you know which cell it is for. The
TableValidationObject#getSource() will always be the JideTable instance. So in case your
validation logic needs to know the values from other cells, you have access to it in the validating
method. This is something you can’t do if you do validation on the cell level.

Row Level Validation
The last level of the validation is between the cell and the table – the row. In fact, in the

design of JTable, there is no row editing concept. There are events when cell stops editing, but
no specific events are fired for the row when user finishes editing a row. However, this is very
useful feature when user tries to edit a database record using a table where they submit and
validate once when the row editing (representing a record) is done. In JideTable, we added the
support for the row validation through an interface called RowValidator. All you need to do is to
call JideTable#addRowValidator(RowValidator). RowValidator is again an interface just like
Validator, which has only one validating method.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

public interface RowValidator extends EventListener {
 ValidationResult validating(RowValidationObject vo);
}

RowValidator will be called when user stops editing a cell and jumps to another row or
focuses out the table. If user is still in the same row after stopping the cell editing, RowValidator
will not be triggered as the row editing is not done yet.

You can add multiple RowValidators and they will be called for all rows. The
RowValiudationObject has getRowIndex method which will tell you which row it is validating.

ValidationResult
No matter which level of validation it is, all the validating methods return ValidationResult.

ValidationResult contains four fields.

 private boolean _valid;
 private int _failBehavior = FAIL_BEHAVIOR_REVERT;
 private int _id;
 private String _message;

The first one is a boolean to indicate whether the validation passed or not. True means the
validation is OK. If so, you usually don’t need to worry about other fields. You could either
return a predefined ValidationResult.OK or simply return null in this case.

The second one is the failBehavior. If the valid flag is false, it means the validation failed. If
so, you also need to tell the table what to do using this failBehavior field. There are three values
for it.

 /**
 * When validation fails, reverts back to the previous valid value.
 */
 public final static int FAIL_BEHAVIOR_REVERT = 0;

 /**
 * When validation fails, do not stop cell editing until user enters a valid value or press

ESCAPE to cancel the editing.
 */
 public final static int FAIL_BEHAVIOR_PERSIST = 1;

 /**
 * When validation fails, reset the value to null.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

14

 */
 public final static int FAIL_BEHAVIOR_RESET = 2;

While the other two values are obvious, the only one worth noting is the
FAIL_BEHAVIOR_PERSIST. If you return this value as the failBahavior, you will get a stack trace
like this when you run it and make the validation fail.

Exception in thread "AWT-EventQueue-0"
com.jidesoft.grid.EditingNotStoppedException

 at com.jidesoft.grid.JideTable.editingStopped(JideTable.java:597)
 at

javax.swing.AbstractCellEditor.fireEditingStopped(AbstractCellEditor.java:125)
 at

javax.swing.DefaultCellEditor$EditorDelegate.stopCellEditing(DefaultCellEditor.java:350)
 at javax.swing.DefaultCellEditor.stopCellEditing(DefaultCellEditor.java:215)
 at javax.swing.JTable$GenericEditor.stopCellEditing(JTable.java:5444)
…

Don’t panic as this is expected. This is probably the only place in JIDE that we use an
exception for a non-exception case. We didn’t catch it but leave it to you do catch and handle it.
The code below is the recommended way to handle it. You can display a message box or a
message on the status bar to tell your users what is wrong and how to correct the errors. We did
it this way is because we want to allow you to handle all validation errors at one place, no
matter it is cell-level, row-level or table-level validations. Internally, this exception also gives us a
chance to break out from JTable’s stop cell editing process so that the cell editor won’t be
removed.

 JTable table = new JideTable(model) {
 @Override
 public void editingStopped(ChangeEvent e) {
 try {
 super.editingStopped(e);
 }
 catch (EditingNotStoppedException ex) {
 // ValidationResult vr = ex.getValidationResult();
 // handle it
 }
 }
 };

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

The third and the last one are an integer id and a message. This is something for you to
define for your application as we don’t read the values for these two fields inside our code at all.
You can use them along with your logging system or error/warning system. Using them is
optional.

Undo Support in JideTable
Swing provides UndoManager, UndoableEdit etc. classes related to the undo/redo. However

the only component that has built-in undo support is the JTextComponent and its subclasses
which uses AbstractDocument. JTable, JList, JTree, although they can also be edited, don't
support undo by default.

In this section, we will discuss how to enable the undo support in a JideTable.

DefaultUndoableTableModel and AbstractUndoableTableModel
Most likely you already had a table implemented in your application when you decide to add

the undo support. So when we design the undo feature, we want the least change to your
existing code. If you are using DefaultTableModel, all you need to do is to replace it with
DefaultUndoableTableModel. If you are using an AbstractTableModel, replace it with
AbstractUndoableTableModel. Of course you also need to use a JideTable or one of its subclass
such as SortableTable as your table class.

Both DefaultUndoableTableModel and AbstractUndoableTableModel implements
TableUndoableSupport. If for whatever reason you can't use the default or the abstract
implementation, you can also implement TableUndoableSupport interface directly and borrow
some code from AbstractUndoableTableModel.

JideTable provides a collection of undo related methods. They are

public void addUndoableEditListener(UndoableEditListener listener);
public void removeUndoableEditListener(UndoableEditListener listener);
public UndoManager getUndoManager();

Please note, these undo related methods won't work (returns null or does nothing) unless
the inner table model is an instance of TableUndoableSupport.

Keystrokes for Undo and Redo
By default, there is no keystroke for the undo and redo action because we don't know what

keystroke to you. But to enable keystrokes is very easy.

InputMap map =
table.getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);

map.put(KeyStroke.getKeyStroke("control Z"), "undo");

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

16

map.put(KeyStroke.getKeyStroke("control shift Z"), "redo");

Note that we use "undo" and "redo" as the action names. That's because we already
registered both actions on JideTable's ActionMap. All you need to do is to map the keystroke to
the action on the InputMap.

TransferHandler Enhancement in JideTable
TransferHandler provides the data transfer from and to a Swing component. By default,

JTable provides a TransferHandler that only supports copy. In the other word, you can select a
range of cells and copy the content to the clipboard. But you can't paste the content.

In JideTable, we created JideTableTransferHandler class which can handle both copy and
paste. The copy and paste can be done between a JideTable and Microsoft Excel or any other
applications. Drag and drop works too as it is using the same TransferHandler.

The TransferHandler enhancement works with the undo feature. When you copy and paste
causing the table model change, you can undo the change as long as you are using a
DefaultUndoableTableModel or AbstractUndoableTableModel.

Converter
Before we introduce the next table – ContextSensitiveTable, we have to cover some basic

modules that most tables would need.

As we all know, JTable follows MVC design pattern. The Model is the TableModel. The View
is the JTable. There could be any type of the data in the TableModel. Unless you use custom cell
renderers that can display data in a more fancy way, the default cell renderer only displays
String. It means we need some kinds of conversion that converts from any types of data to
String so that it can be displayed in the table cells. Editing table is the opposite. It needs a
converter that converts from String to any data type. Here comes the ObjectConverter.

Below is the interface of ObjectConverter. All converters implement this interface.

public interface ObjectConverter {
 /**
 * Converts from object to String based on current locale.
 * @param object object to be converted
 * @return the String
 */
 abstract String toString(Object object, ConverterContext context);

 /**

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

17

 * If it supports toString method.
 * @return true if supports toString
 */
 abstract boolean supportToString(Object object, ConverterContext context);

 /**
 * Converts from String to an object.
 * @param string the string
 * @return the object converted from string
 */
 abstract Object fromString(String string, ConverterContext context);

 /**
 * If it supports fromString.
 * @return true if it supports
 */
 abstract boolean supportFromString(String string, ConverterContext context);
}

As an example, assume you are dealing with a Rectangle object, specified as (10, 20, 100,
200). If you represent this Rectangle as the string “10; 20; 100; 200” then 80% of users will
probably understand it as a Rectangle with x equals 10, y equals 20, width equals 100 and height
equals 200. However, what about the other 20% of the people? Well, they might think it is an int
array of four numbers. That’s fine. Users can generally learn by experience: as long as you are
consistent across your application, users will get used to it. What is more important is you use
the converter consistently across your whole application. If you decide to use “;” as the
separator, do not also use “,”.

The situation is slightly more complicated in the case of Color. If we consider the string “0,
100, 200” - if people understand the RGB view of Color then 90% of them will treat as 0 as red,
100 as blue and 200 as green. However, since Color can also be represented in HSL color space
(Hue, Saturation, and Lightness), some people may consider it as hue equal 0, saturation equals
100 and lightness equals 200. Another way to represent the color is to use the HTML color name
such as “#00FFFF”. If your application is an html editor, you probably should use a converter to
convert color to “#00FFFF” instead of “0, 255, 255”. What this means is that, based on your
users’ background, you should consider adding more help information if ambiguity may arise.

We also need to consider internationalization, since the string representation of any object
may be different under different locales.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

18

In conclusion, we need a series of converters that convert objects so that we can display
them as string and convert them back from string. However in different applications, different
converters are required.

Although we have already built some converters and will add more over time, it is probably
true that there will never be enough. Therefore, please be prepared to create your own
converters whenever you need one.

The list below shows all the converters that we currently provide.

Figure 4 Existing converters

If you want to add your own converters then you can create one quite easily, by
implementing a class that extends the ObjectConverter interface (i.e. the four methods in this
interface). Before you use it, you must register it with ObjectConverterManager, which maps
from a Class to a converter or several converters. If you want to register several converters for
the same object then you can use ConverterContext to differentiate them.

There are two static methods on ObjectConverterManager that are used to register a
converter:

void registerConverter(Class, ObjectConverter).

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

19

void registerConverter(Class, ObjectConverter, ConverterContext).

To help users adding their own classes that support ConverterContex, we provide an
interface called ConverterContextSupport (all of our CellEditor and CellRenders implement this
interface).

We didn’t automatically register the existing converters with the ObjectConverterManager.
However, we do provide a method initDefaultConverter() which you can call to register the
default converters (as shown below). In addition to converters, this will register the default
CellEditors and CellRenderers that we have provided. If you wish to make use of this facility then
make sure that you call the initDefaultConverter() method when your application is started.

 ObjectConverterManager.initDefaultConverter();

CellEditors and CellRenderers
The usage of CellEditor and CellRenderer is probably one of the most interesting aspects of

the original JTable design.

First, let’s review how JTable handles customization of cell editors and cell renderers.

1. You can set a CellRenderer and CellEditor per column using TableColumn’s
setCellRenderer and setCellEditor methods respectively.

2. You can set a default CellRenderer and CellEditor per data type using
setDefaultRenderer(Class, TableCellRenderer) and setDefaultEditor(Class,
TableCellEditor) respectively.

3. The cell renderer or editor set in the first case has a higher priority than it in the second
one.

From above, you can see a JTable assumes that each column has the same type of value,
and that each data type will use the same type of cell editor. Unfortunately, neither of these
assumptions is true in some cases (such as PropertyTable which we will cover later). Fortunately
enough, JTable does allow us to add extensions to meet our requirements.

In the case of PropertyTable, each row in the value column may have different types of
value, requiring different editors - even when the same underlying data type is being used. In
order to support this requirement we have created two new classes: CellEditorManager and
CellRendererManager, using an approach similar to the ObjectConverterManager.

If we first consider the CellEditorManager, this allows you to register any cell editor with a
given data type, as defined by its class. You can also register a different cell editor to the same
type using different contexts. Different from CellRendererManager, CellEditorManager takes
CellEditorFactory to make sure an unique cell editor is used for each cell editing.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

20

public static void registerEditor(Class clazz, CellEditorFactory editorFactory,
EditorContext context)

public static void registerEditor(Class clazz, CellEditorFactory editorFactory)

 As an example, the String class is generally associated with a StringCellEditor. However, if
the String is actually a font name then we associate it with a FontNameCellEditor in the context
of FontNameCellEditor.CONTEXT. If you still remember the definition of Property, you will recall
that the Property class has a field called EditorContext. This means that if you set the
EditorContext of a Property to FontNameEditor.CONTEXT then a FontNameCellEditor will be
used to edit cells of that type.

 registerEditor(String.class, new CellEditorFactory() {
 public CellEditor create() {
 return new StringCellEditor();
 }
 });
 registerEditor(String.class, new CellEditorFactory() {
 public CellEditor create() {
 return new FontNameCellEditor();
 }
 }, FontNameCellEditor.CONTEXT);

The Renderer framework works in a virtually identical manner to the Editor framework.

Both CellRendererManager and CellEditorManager have a method to initialize default
editors or renderers, called initDefaultRenderer() and initDefaultEditor(), respectively. Please
note that these methods are not called automatically (except in our demo code). This means
that if you want to use our default editors and renderers then you must make sure to initialize
them yourself before you can use the related classes.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

21

Figure 5 Existing CellEditors and their hierarchy

Here is the code to register default editors and renderers.

 CellEditorManager.initDefaultEditor();
 CellRendererManager.initDefaultRenderer();

In fact, in JIDE Grids, not just ProperyTable uses CellEditorManager and
CellRendererManager. ContextSensitiveTable is the table class that starts to use it. If you
remember the table hierarchy at the “Class Hierarchy of All the Tables” section, you will see all
tables provided in JIDE Grids extend ContextSensitiveTable except JideTable. It means tables
such as SortableTable, TreeTable, HierarchicalTable, CellSpan/StyleTable all can use
CellEditor/RendererManager.

ContextSensitiveTable uses a table model called ContextSensitiveTableModel.
ContextSensitiveTableModel extends TableModel interface and added three more methods. See
below.

 /**
 * Gets the converter context at cell (row, column).
 *
 * @param row
 * @param column
 * @return converter context
 */

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

22

 ConverterContext getConverterContextAt(int row, int column);

 /**
 * Gets the editor context at cell (row, column).
 *
 * @param row
 * @param column
 * @return editor context
 */
 EditorContext getEditorContextAt(int row, int column);

 /**
 * Gets the type at cell (row, column).
 *
 * @param row
 * @param column
 * @return type
 */
 Class getCellClassAt(int row, int column);

getCellClassAt returns the data type for a cell. If you need different cell renderer or editor
for the same data type, returns a different EditorContext in getEditorContextAt() for those cells.
Please note, both CellRendererManager and CellEditorManager use EditorContext to look up
alought the name of EditorContext has “editor” in it.

The getConverterContextAt method can be used if you want to use the same default cell
renderer but want to display the data differently. The converter context is used to find the
correct ObjectConverter that can convert from a data type to/from a string so that the default
cell renderer can display it. By using this feature, you save the effort of creating a new cell
renderer for each data type because in most cases, a data type can be converted to a string.

In addition, we also added setDefaultCellRenderer method to ContextSensitiveTable will
allow you to set a cell renderer that will be used for all cells.

Let’s see after this enhancement, how cell renderer can be customized.

1. setDefaultCellRenderer to set the same cell renderer for all cells in a table.

2. You can still set a TableCellRenderer per column using TableColumn’s setCellRenderer
methods respectively. This is just like before.

3. You can set your cell renderers to CellRendererManager. Then implement a table model
that implementing ContextSensitiveTableModel. The cell renderers will be looked up
from CellRendererManager and used.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

23

a. There is a special case. If you are OK to use ContextSensitiveCellRenderer to
display your data as string, you can return a different ConverterContext in
ContextSensitiveTableModel. ContextSensitiveCellRenderer will use the
ObjectConverter it finds to convert your data into string.

4. You can still set a default CellRenderer per data type using setDefaultRenderer(Class,
TableCellRenderer). This is again just like before. But if will only happen if either you
called setCellRendererManagerEnabled(false) or you didn’t implement
ContextSensitiveTableModel in your table model.

5. The first case has a higher priority than the second one and so on.

How about cell editor?

1. You can still set a TableCellEditor per column using TableColumn’s setCellEditor methods
respectively. This is just like before.

2. You can set your cell editors to CellEditorManager. Then implement a table model that
implementing ContextSensitiveTableModel. The cell editors will be looked up from
CellEditorManager and used.

3. You can still set a default CellEditor per data type using setDefaultEditor(Class,
TableCellEditor). This is again just like before. But if will only happen if either you called
setCellEditorManagerEnabled(false) or you didn’t implement
ContextSensitiveTableModel in your table model.

4. The first case has a higher priority than the second one and so on.

We prepared G26. ContextSensitiveTableDemo in the examples folder, which shows you
how to use this feature.

NavigableModel and NavigableTable
Table is very data intensive. For frequent table users (i.e. Excel users), they prefer use

keyboard to edit the whole table without ever touching the mouse to slow them down. So it is
very important to optimize the cell navigation for those keyboard users.

In JTable, TAB key will navigate to the next cell, SHIFT-TAB will go to the previous cell and
ENTER key will go to the cell of the next row. If user is editing the table, one thing we know for
sure is if the next cell is not editable, most likely user wants to skip the cell when he/she presses
the TAB. Or sometimes user wants to skip all the way to the next empty cell. In the other word,
even though the next cell is editable but it is already filled with data, so no need to navigate to
it. The actual requirement for this navigation could be more complex than the two simple
examples. That’s the reason we decide to introduce NavigableModel to allow you to customize
the navigation behavior.

See below for the interface of NavigableModel. If you read SpanModel and StyleModel, you
will find this interface is familiar. In fact, it’s not just the interface is similar, so is the usage.

public interface NavigableModel {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

24

 /**
 * Returns if the cell at the given coordinates can be navigated or
 * not.
 *
 * @param rowIndex The row index
 * @param columnIndex The column index
 * @return <code>true</code> if navigable, <code>false</code> otherwise
 */
 boolean isNavigableAt(int rowIndex, int columnIndex);

 /**
 * Checks if the navigation is on. If off, {@link #isNavigableAt(int,int)}
 * should always return <code>true</code> for valid indexes.
 *
 * @return <code>true</code> if on, <code>false</code> otherwise
 */
 boolean isNavigationOn();

}

You can implement this NavigableModel on any table model. You will implement the
isNavigableAt method to decide if this cell is navigable when user presses TAB, SHIFT-TAB or
ENTER key.

We also create NavigableTable class to use NavigableModel. However you don’t have to use
it explicitly as most other JIDE tables such as SortableTable, PropertyTable, and TreeTable
extend it.

Customize the navigation keys
We mentioned TAB, SHIFT-TAB or ENTER keys as the default navigation keys. In fact, JTable

also supports all the arrow keys such as LEFT, RIGHT, UP, DOWN, PGUP, PGDN, HOME and END.
By default, those keys will obey use NavigableModel. If you want some of the keys to use
NavigableModel, you can override this method to do it. Just return true if you want to treat
them as navigable keys.

protected boolean isNavigationKey(KeyStroke ks)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

25

CellSpanTable
The next table is the CellSpanTable which one cell can span several rows or columns or both.

To know what it is, we need to understand CellSpan first.

CellSpan defines how a cell spanning across several rows or/and columns. CellSpan has four
fields. They are row, column, rowSpan, columnSpan. All are int type. The (row, column) is
actually the anchor cell of the cell span. rowSpan tells how many rows the cell will span.
columnSpan tells how many columns the cell will span. You can view them as Rectangle’s y, x,
height and width respectively.

Let’s use the following table as an example. The cell marked as light green is a cell span. The
cell span is defined as row = 1, column = 1, rowSpan = 2, and columnSpan = 3.

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) CellSpan (1, 1, 2, 3)
(2, 0)
(3, 0) (3, 1) (3, 2) (3, 3)

Now you know how to define a cell span. But how to pass the cell span information to table
so that it knows how to paint the cells correctly? Instead of introducing a whole separate model,
we decided to use TableModel. First we defined SpanModel as an interface and then
SpanTableModel which combines SpanModel and SpanTableModel together. See below.

public interface SpanModel {
 /**
 * Gets the cell span at the specified row and column.
 * @param rowIndex
 * @param columnIndex
 * @return CellSpan object.
 */
 CellSpan getCellSpanAt(int rowIndex, int columnIndex);

 /**
 * Checks if the span is on. There are two meanings if it returns false.
 * It could be getCellSpanAt() return a valid value but
 * It could also be the span model is empty which means getCellSpanAt() always

return null.
 * @return true if span is on. Otherwise false.
 */
 boolean isCellSpanOn();
}

/**

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

26

 * <code>SpanTableModel</code> interface combines <code>TableModel</code> and
<code>SpanModel</code>.

 */
public interface SpanTableModel extends TableModel, SpanModel {
}

When you define your table model which you have to do it anyway, you can define what
SpanModel is. Let’s see some real examples.

This is a table with every third row spanning across the whole table width. The code to do it
is very simple at the getCellSpanAt(rowIndex, columnIndex) method. Every third row translated
to if(rowIndex % 3 == 0). So if rowIndex can be divided by 3, returns a cell span that anchor cell
is at the first cell in that row and columnSpan is column count.

Figure 6 CellSpanTable

 class SpanTableTableModel extends AbstractSpanTableModel {
 public int getRowCount() {
 return 10000;
 }

 public int getColumnCount() {
 return 9;
 }

 public boolean isCellEditable(int rowIndex, int columnIndex) {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

27

 return false;
 }

 public Object getValueAt(int rowIndex, int columnIndex) {
 return "" + rowIndex + "," + columnIndex;
 }

 public CellSpan getCellSpanAt(int rowIndex, int columnIndex) {
 if (rowIndex % 3 == 0) {
 return new CellSpan(rowIndex, 0, 1, getColumnCount());
 }
 return null;
 }

 public boolean isCellSpanOn() {
 return true;
 }
 }

Here is another more complex example. You can read the code to figure out how it works.

Figure 7 CellSpanTable

 class SpanTableTableModel extends AbstractSpanTableModel {
 public int getRowCount() {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

28

 return 10000;
 }

 public int getColumnCount() {
 return 9;
 }

 public boolean isCellEditable(int rowIndex, int columnIndex) {
 return false;
 }

 public Object getValueAt(int rowIndex, int columnIndex) {
 return "" + rowIndex + "," + columnIndex;
 }

 public CellSpan getCellSpanAt(int rowIndex, int columnIndex) {
 if ((rowIndex % 3) != 2 && (columnIndex % 3) != 2) {
 return new CellSpan(rowIndex - rowIndex % 3, columnIndex - columnIndex %

3, 2, 2);
 }
 return super.getCellSpanAt(rowIndex, columnIndex);
 }

 public boolean isCellSpanOn() {
 return true;
 }
 }

You probably already noticed we used AbstractSpanTableModel in the examples above
which we haven’t introduced. AbstractSpanTableModel extends AbstractTableModel and
implements SpanTableModel and provides default implementation onto the two methods
defined in SpanModel. Please note, it returns false in isCellSpanOn() which means if you want to
see cell span, you have to override it and return true. The reason we did is because there are
other table components that extends CellSpanTable. We don’t want cell span is turned on by
mistake.

AbstractSpanTableModel also provides support for SpanModelListener and
SpanModelEvent.

abstract public class AbstractSpanTableModel extends AbstractTableModel implements
SpanTableModel {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

29

 public CellSpan getCellSpanAt(int rowIndex, int columnIndex) {
 return null;
 }

 public boolean isCellSpanOn() {
 return false;
 }
 .….
}

There is another table model called DefaultSpanTableModel. It extends DefaultTableModel
and implements SpanTableModel. In this model, you get additional methods such as
addCellSpan, removeCellSpan.

Once we understand the SpanTableModel and different subclasses, CellSpanTable is very
simple to use. There is no additional method on it except three methods starting with “orginal”.
They are originalRowAtPoint, originalColumnAtPoint and originalGetCellRect. They are handy
when you need to get the old cell rectangle, row and column without considering the cell spans
but in most cases you won’t need them.

In general, CellSpanTable is very fast. In the example above, we have 10000 rows in the
table and fairly complex cell spans, we couldn’t even notice any difference when scrolling up
and down quickly. However since it’s user’s responsibility to implement getCellSpanAt()
method, how complex this method is does affect the speed of CellSpanTable. So when you
implement this method, please make sure you optimize it as much as you can. We suggest you
to use the same CellSpan instance over and over again6 so that it will increase the memory
usage in a short period of time (although it will be garbage collected later). The other
performance tuning technique you can use in this case is to cache the cell span if the cell span is
very difficult to calculate. Of course then you have to deal invalidating the cache when table
data changes.

Since Java doesn’t support multiple inherent, we have to put CellSpanTable at a lower level.
Most table components in JIDE Grids are actually CellSpanTable such as TreeTable,
PropertyTable, HierarchicalTable, SortableTable etc. There is one reason why we added
isCellSpanOn() method to SpanModel. If your table model is not an instance SpanModel or it is
but isCellStyleOn() returns false, there is no performance hit at all even if your table extends
CellSpanTable.

6 Please note, we didn’t use the same CellSpan instance in the two examples above as it will make the
code a little harder to read. However for you it’s very simple to change it to reuse the same instance. All
you need is to create a field of type CellSpan and set different row, column, rowSpan and columnSpan
value on it and return the same thing. If there is no cell span, still return null.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

30

Figure 8 Corrupted Cell Span Display

One of the common mistakes when defining a span table model is the span definition
inconsistence. The span definition inconsistence refers to a definition error in getCellSpanAt
method when the cells in the same cell span return different CellSpans. The result is the display
conrruption as shown on the screenshot above. The display conrruption is intermitten and the
result may not be the same all the time, which make it hard to identify. The best way to detect
this error is to use a static verifyCellSpan method on CellSpanTable. If there are errors, this
method will print out something like below.

Cell at (0, 1) has a different cell span from that of the anchor cell (0, 0)
 (0, 0)-> CellSpan(0, 0, 2, 2)
 (0, 1)-> CellSpan(0, 1, 1, 1)
Cell at (1, 0) has a different cell span from that of the anchor cell (0, 0)
 (0, 0)-> CellSpan(0, 0, 2, 2)
 (1, 0)-> CellSpan(1, 0, 1, 1)
Cell at (1, 1) has a different cell span from that of the anchor cell (0, 0)
 (0, 0)-> CellSpan(0, 0, 2, 2)
 (1, 1)-> CellSpan(1, 1, 1, 1)
...

The message above simply tells you that the cell span at (0, 1), (1, 0) and (1, 1) should all be
the same which should be CellSpan(0, 0, 2, 2).

CellStyleTable
What is cell style? Usually all the cells in the same table has the same color, same font, same

alignment (at least in the same column). However there are many cases we want to have
different styles on each cell to highlight certain cells or archive the strips effect. In a regular
JTable, we usually use cell renderers to do it. You will end up with creating several cell renderers

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

31

to do various cell styles. CellStyleTable provides a better and easier way to archive this and
more.

Cell styles include the foreground, the background, the font, the alignments (horizontal and
vertical), the border, the icon, etc. If you think there are other styles that should be added, just
let us know. It’s very simple to introduce new styles.

The design of CellStyleTable is almost the same as CellSpanTable. Instead of CellSpan, we got
CellStyle class. CellStyle is just a collection of the styles we mentioned above. Then we got
StyleModel and StyleTableModel.

public interface StyleModel {
 /**
 * Gets the cell style at the specified row and column.
 * @param rowIndex
 * @param columnIndex
 * @return CellStyle object.
 */
 CellStyle getCellStyleAt(int rowIndex, int columnIndex);

 /**
 * Checks if the style is on. There are two meanings if it returns false. It could be
 * getCellStyleAt() return a valid value but it could also be the style model is empty

which
 * means getCellStyleAt() always return null.
 * @return true if style is on. Otherwise false.
 */
 boolean isCellStyleOn();
}
/**
 * <code>StyleTableModel</code> interface combines <code>TableModel</code> and

<code>StyleModel</code>.
 */
public interface StyleTableModel extends TableModel, StyleModel {
}

If you read SpanTableModel section, you will see this StyleTableModel is almost a copy of it
except changing from “Span” to “Style”. We intentionally did it this way so that you can get
familiar with those interfaces easily. When you implement StyleModel, all you need to do is to
return a desired CellStyle at getCellStyleAt(int rowIndex, int columnIndex) method.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

32

Available CellStyles
There are many cell styles that can be used in various situations to make your table more

interesting.

Style Name Data Type Renderer
Component Type Notes

background Color Any Components
foreground Color Any Components
selectionBackground Color Any Components
selectionForeground Color Any Components
font Font Any Components
fontStyle int Any Components
icon Icon JLabel,

AbstractButton

verticalAlignment int JLabel,
AbstractButton
AbstractComboBox

horizontalAlignment int JLabel,
AbstractButton,
JTextField,
AbstractComboBox

verticalTextPosition int JLabel,
AbstractButton

horizontalTextPosition int JLabel,
AbstractButton

text String JLabel,
AbstractButton,
JTextField

The text style allows you to display a
specified text instead of the actual value of
the cell.

toolTipText String Any JComponents
border Border Any JComponents The border style is set to the renderer

component
overlayBorder Border Any Components The overlay border style is painted over the

cell renderer, unlike the border style which
actually sets the border

overlayCellPainter CellPainter Any Components The overlay CellPainter is painted after the
cell content is painted

underlayCellPainter CellPainter Any Components The underlay CellPainter is painted before
the cell content is painted

Where to Define CellStyle
There are two kinds of cell styles. One is the style depending on the data of the cell. For

example, showing red background if the value is negative, displaying an up or down icon if the
data (representing stock price change maybe) is positive or negative. The other case is the style
that is not depending on the data. For example, the row stripes, the column strips etc.

For the first case, you should define StyleModel on the table model and return CellStyle from
the getCellStyleAt method. For the second case, the best way is to define it on CellStyleTable
using setTableStyleProvider.

As row/column stripes is so popular, we even created RowStripeTableStyleProvider and
ColumnStripeTableStyleProvider, you can use it simply by calling

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

33

CellStyleTable table = …;
table.setTableStyleProvider(new RowStripeTableStyleProvider(new Color[]{…}); // pass

in the alternative colors here

CellStyle Merging
When there is a pipe of several table models, StyleModel can be implemented at any of the

table models. TableStyleProvider also provides a cell style. Sometimes, the style depends on the
actual table data. If so, you probably should implement the StyleModel on the actual table
model level to avoid index conversion. Sometimes, the style depends on the row position in the
view, such as alternative row stripes. In this case, you will use CellStyleTable’s
TableStyleProvider. We allow you to define CellStyle at the appropriate TableModel and we will
merge the styles for you. When there are conflicts in the styles, we allow you to define the
priority using CellStyle#setPriority(int). By default, if prioritys for all cell styles are the same, the
inner model has the highest priority and TableStyleProvider on CellStyleTable has the lowest
priority.

SortableTable

Comparator
Before we introduce SortableTable, we first have to introduce the

ObjectComparatorManager. This works in a similar manner to the ObjectConverterManager
which we have already discussed, with the difference being that ObjectComparatorManager is a
central place for managing comparators. Registration of comparator can be done using the
following two methods on ObjectComparatorManager.

public static void registerComparator(Class clazz, Comparator comparator);
public static void unregisterComparator(Class clazz);

The figure to the right shows the standard comparators that we provide. If an object type
implements Comparable then you can use ComparableComparator. If the object can be
compared as a string (based on the value of toString())
then you can use DefaultComparator. We also provide
several comparators for existing data types such as
NumberComparator for any Number, BooleanComparator
for Boolean and CalendarComparator for Calendars.
Alternatively, you can write your own comparator and register it with
ObjectComparatorManager.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

34

Sortable Table
A SortableTable, as the name indicates, is a table that can sort on each column. Usually a

SortableTable can only sort on one column. However this SortableTable can sort on multiple
columns, as shown below:

Figure 9 SortableTable under different L&F

In a SortableTable, clicking on table column header will sort the column: the first click will
sort ascending; the second click descending; the third click will reset the data to the original
order. To sort on multiple columns, you just press CTRL key and hold while clicking on the other
columns. A number is displayed in the header to indicate the rank amongst the sorted columns.
As an example, in the screen shot above, the table is sorted first by “boolean column”, then by
“double column” and then by “string column”.

Figure 10 Multiple Column Sorting

SortableTableModel
The core part of SortableTable is not the table itself but the SortableTableModel. This can

take any standard table model and convert to a suitable table model for use by SortableTable.
Note that we wrap up the underlying table model, which means that when you sort a column,
the original table model is unchanged (you can always call getActualModel() to get the original
table model).

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

35

As a developer, how do I use it

It’s very easy to use SortableTable in your application. Just create your table model as usual,
but instead of setting the model to JTable, set it to SortableTable. If you have your own JTable
class which extends JTable then you will need to change it to extend SortableTable.

 TableModel model = new SampleTableModel();
 SortableTable sortableTable = new SortableTable(model);

In the example above, SampleTableModel is just a normal table model. When you pass the
model to SortableTable, SortableTable will create a SortableTableModel internally. This means
that when you call sortableTable.getModel(), it will return you the SortableTableModel, not the
SampleTableModel. However if you cast the table model you get to TableModelWraper and
then call getActualModel() on the table model, the SampleTableModel will be returned. If you
use several levels of TableModelWrappers such as FitlerableTableModel, you may want to use
TableModelWrapperUtils#getActualTableModel(TableModel,Class) to find the inner most table
model.

Sometimes, you need to know the actual row since it’s different visually. For example,
although the first row may appear to be selected, since the table could be sorted, this may not
be the first row in the actual table model. Here are the two methods you need to know:
getActualRowAt(int row) and getSortedRowAt(int row). The first one will return you the actual
row in the actual table model by passing the row index on the screen; the second one does the
opposite mapping. In fact, we suggest you to use TableModelWrapperUtils’ getActualRowAt and
getRowAt to do the index conversion once you start to use FilterableTableModel along with
SortableTableModel. We will cover FilterableTableModel later. In short, both
FilterableTableModel and SortableTableModel are table model wrappers. Once there are several
models that one wraps the other. TableModeWrapperUtils will allow you to find the row index
at any table model level, v.s. the two methods on SortableTableModel only allows you to find
one level at a time.

There are several options you can use to control SortableTable. For example,
setMultiColumnSortable(Boolean) allows you to enable/disable multiple column sort. Similarly,
if you have better icons for showing the ascending/decending option on the table header, then
you can call setAscendingIcon(ImageIcon) to setDescendingIcon(ImageIcon) to replace the
standard icons.

As has already been explained, the user can click the column header to sort a column. In
addition you can call sortColumn() to sort a column programmatically. You can sort either by
column index, or by column name. The interface for sorting on SortableTable is really simple. If
you want to sort by multiple columns programmatically, you will have to use
SortableTableModel to do it. This provides more methods will allow you to sort several columns
or even un-sort a sorted column.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

36

How to Compare

You may think we use Comparator all the time to compare two values. However that’s not
the case by default. The actual comparison is done in this method of SortableTableModel.

protected int compare(Object o1, Object o2, int column)

We will first to see if the two objects are String. If yes, we use String’s compareToIgnoreCase
method to compare. Then we will see if the two objects are Comparable. If yes and they are
type compatible, we will use either o1.compareTo(o2) or o2.compareTo(o1) to compare the two
values. compareTo(…) is the method on Comparable interface. If none of the above is true, we
will finally use Comparator to compare. Comparator is looked up from
ObjectComparatorManager using the type returned getColumnClass as the primary key and the
context returned from getComparatorContext as the second key. The main reason we did it this
way is because we found people always forgot to override getColumnClass() method then
complained to us why sorting is not working as expected. By using compareTo method, it will
work in most cases without depending on getColumnClass(). Saying that, there are cases you
have to use Comparator because, for example, you provide some customized compare logic in
it. If so, you can call SortableTableModel’s setAlwaysUseComparators(true) so that we will
always use Comparator to compare without even checking if the objects are Comparable.

The performance of SortableTableModel

We tried to optimize the performance of SortableTableModel. The basic strategy is if the
table is completely unsort, we will sort the whole table model which could be slow if the table is
huge. If the table is sorted already and a new row is added/deleted/updated, we will do
incremental sorting. For example, insert the new row to the correct position directly.

As we have no idea of what the data might look like, we have to use a generic sorting
algorithm. In our case, we used shuttle sort. It’s a very fast algorithm comparing to others.
However depending on how large the table model is, it could potentially take a long time on a
large table model. In the actual use cases, user knows very well about the data. So they could
develop a sorting algorithm that is customized to the particular data.

When the table is sorted, a new row is added or deleted or some values are updated in the
underlying table model, we won’t resort the whole table again. We will listen to the table model
event from underlying table model and do incremental sort. Binary search is used by default as
the table is sorted already. In this case, as user of SortableTableModel, you need to fire the
exact table model event to tell SortableTableModel what happened in underlying table model. If
you use DefaultTableModel, all those are done automatically. If you implement your own
underlying table model basing on AbstractTableModel, you need to fire the table model event.
You can refer to the source code of DefaultTableModel to figure out what event to fire. If an
incorrect event is fired, the sorting result will be unpredictable.

Generic speaking, in our testing environment, the performance of SortableTableModel is
good enough. You can try in using LargeSortableTableDemo we included in our examples.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

37

However if you have an even better algorithm or as I said you know your data very well so that
you can play some tricks to make sorting faster, we allow you to do so.

First, you need to extend SortableTableModel. There are three methods you need to know
in order to plug in your own algorithm. They are

protected void sort(int from[], int to[], int low, int high);

protected int search(int[] indexes, int row);

protected int compare(int row1, int row2);

When the table model is completely unsorted, sort() will be used to sort the whole table
model. If the table is sorted already, search() will be called to find out where a new row to be
added or an existing row to be deleted. So method sort can be overwritten if you want to use
your own sort algorithm. Method search can be overwritten if you want to use your own search
algorithm.

In either sort() or search(), if you want to compare two rows, using the compare() method.
Usually you don’t need to overwrite it. To make it easier to understand, here is the source code
we used to do the search and sort for your reference.

Search algorithm:

 protected int search(int[] indexes, int row) {
 return binarySearch(indexes, row);
 }

 private int binarySearch(int[] indexes, int row) {
 // use binary search to find the place to insert
 int low = 0;
 int high = indexes.length - 1;
 int returnRow = high;

 boolean found = false;
 while (low <= high) {
 int mid = (low + high) >> 1;
 int result = compare(indexes[mid], row);
 if (result < 0)
 low = mid + 1;
 else if (result > 0)
 high = mid - 1;
 else {
 returnRow = mid; // key found
 found = true;
 break;

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

38

 }
 }
 if (!found) {
 returnRow = low;
 }
 return returnRow;
 }

Sort algorithm:

 protected void sort(int from[], int to[], int low, int high) {
 shuttlesort(from, to, low, high);
 }

 private void shuttlesort(int from[], int to[], int low, int high) {
 if (high - low < 2)
 return;

 int middle = (low + high) / 2;
 shuttlesort(to, from, low, middle);
 shuttlesort(to, from, middle, high);

 int p = low;
 int q = middle;

 if (high - low >= 4 && compare(from[middle - 1], from[middle]) <= 0) {
 for (int i = low; i < high; i++)
 to[i] = from[i];
 return;
 }

 for (int i = low; i < high; i++) {
 if (q >= high || (p < middle && compare(from[p], from[q]) <= 0))
 to[i] = from[p++];
 else
 to[i] = from[q++];
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

39

 }

Filter and FilterableTableModel
Table is used to display data. Sometimes users are only interested in some important rows,

so they would like to filter other rows away. This is why we need a component which can do
filter on the table model.

Filter is an interface which is used to filter data. The main method is isValueFiltered(Object
value). If a value should be filtered, this method should return true. Otherwise, returns false. It
also defined other methods such as setters and getters for name, enabled as well as methods to
add/remove FilterListener. AbstractFilter is the default implement of Filter interface. It
implements most of the methods in Filter except isValueFiltered(). Subclasses should implement
this method to do the right filtering.

There is no class called FilterTable because the filtering happens on the table model portion.
There is no code need to be added to the table portion to do the filtering. There is a
FilterableTableModel. It’s also a table model wrapper just like SortableTableModel.
FilterableTableModel allows you to add filter for each column or to the whole table. It will use
those Filter and call isValueFiltered() to decide which value to be filtered.

In most cases, you can use Filter interface or AbstractFilter as the filters. But if the filter logic
depends on the row index and column index, you may need to use TableFilter or
AbstractTableFilter. TableFilter has getRowIndex and getColumnIndex methods which you can
use to get the row and column index.

AutoFilterTableHeader

Figure 11 AutoFilterTableHeader

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

40

AutoFilterTableHeader implements auto-filter feature on the table header. Each column
header has a combobox-like control to allow user selecting certain value(s) to be filtered from
the list. The list contains the possible values for that column as well as other customized items.
Each item represents a Filter class that will be added to FilterableTableModel when selected.

Since JIDE 3.0 release, we redesigned the AutoFilterTableHeader so that it will only show the
filter drop down button when the mouse is over the column. It means by default,
AutoFilterTableHeader will look just like a regular JTableHeader.

AutoFilterTableHeader works with any FilterableTableModel. If the table passed to the
constructor of AutoFilterTableHeader already defined a FilterableTableModel, it will use that
FilterableTableModel. Otherwise, it will create a new FilterableTableModel, wrapping the
current table's table model and reset the table's table model to the newly created
FilterableTableModel.

Among the drop down list, there is a “Custom…” entry. If you click on it, it will bring up a
dialog that can define customer filters.

User can choose all kinds of built-in filters from this dialog. We will cover more information

in the CustomFilterEditor section below.

AutoFilterTableHeader also supports multiple filter values. See below. We will use a
CheckBoxList to allow you to select multiple values.

Figure 12 Multiple Values as Filter

There are three kinds of Filters AutoFilterTableHeader will use. They are SingleValueFilter,
MultipleValuesFilter and DynamicTableFilter. When isAllowMultipleValues() returns false and
user selects a value from AutoFilterTableHeader's drop down value list, SingleValueFilter will be
created and added to that column as the filter. DynamicTableFilter could also be used in this
case when you call AutoFilterBox#addDynamicTableFilter(DynamicTableFilter). This method call
will add new custom filter to the header which will appear as a new item under "All" item in the

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

41

drop down value list. If isAllowMultipleValues() returns true, MultipleValuesFilter will be the
only filter that is used to allow multiple values as the filter values.

AutoFilterTableHeader also detects filters added outside AutoFilterTableHeader. For
example, if isAllowMultipleValues returns false, you can add a SingleValueFilter to the column,
or if isAllowMultipleValues returns true, you can add a MultipleValuesFilter. After you did it,
AutoFilterTableHeader will automatically update the display to show a filter name or filter name
to indicate the column has a filter.

AutoFilterTableHeader also supports the filter indicator on the header. It can be icon only,
filter value(s) only, or both. In the case of isAllowMultipleValues is true, we will display the
number of values instead of the actual values as there could a lot of them.

TableModelWrapper
We just talked about SortableTableModel and FilterableTableModel. In fact, both

implements TableModelWrapper interface.

/**
 * <code>TableModelWrapper</code> is a wrapper around table model which is

referred
 * as the actual table model or underlying table model. It can be used to provide a
 * different view to the actual model. A typical use case is SortableTableModel.
 */
public interface TableModelWrapper {
 /**
 * Gets the underlying table model.
 *
 * @return the underlying table model.
 */
 TableModel getActualModel();
}

On top of TableModelWrapper, we also have RowTableModelWrapper and
ColumnTableModelWrapper. Let’s look at an example of how we use RowTableModelWrapper
to implement sorting. Instead of modifying the actual table model, we just provide a row index
mapping. The first row after sorting is actually the 4th row in the actual model. So all we need is
to put 3 at the first index in the mapping, and so on.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

42

For FilterableTableModel, it is the same thing. We just remove the row indices that are not

satisfy the filter condition.

Since both FilterableTableModel and SortableTableModel are table model wrappers, you

can connect them to for a “pipe”.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

43

That’s how you implement both sorting and filtering feature in JIDE Grids.

We also provide TableModelWrapperUtils which has a bunch of methods to allow you to
convert the row index. For example, if you know the first row is selected in the table, you need
to find out the actual row index in the actual table model, TableModelWrapperUtils’
getActualRowAt is the one to use.

CompoundTableModelEvent
In the case TableModelWrappers, events are passed from model to model. In some cases,

the event could change its meaning. A row deleted event will not be fired on an outer model
because the model is a FilterableTableModel and the deleted row is already filtered. A
continuous rows deleted event may become several discontinued row deleted event because
SortableTableModel changed the row order. It will cause some problems.

Since 3.0 release, we introduced this CompoundTableEvent to handle some of those
complicated scenarios. For example, if a sorted SortableTableModel receives a row updated
event from its underlying table model, the updated row could change its position. In this case,
SortableTable needs to get a tableRowsDeleted event for the original position and another
tableRowsInserted event for the updated position. However, it's not appropriate to fire two
separate events for one action. It will also impact the performance if we simply fire
tableDataChanged event. That's why we introduce this class.

Basically, JIDE fires this CompoundTableModelEvent only if there are two or more child
events embedded in. The event itself will represent as a tableDataChanged event. That means, if
you don't try to distinguish it with regular TableModelEvents, it will fall into the branch you
handle tableDataChanged event. However, it doesn't mean that CompoundTableModelEvent
has to be a tableDataChanged event. You could fire whichever event you want following the
instruction of TableModelEvent.

You could invoke getEvents() to get the embedded child events inside the event. The order
of those child events inside the CompoundTableModelEvent matters. The listener is expected to
handle the embedded event one by one.

For example, if a CompoundTableModelEvent contains two events, the first one is row
insertion at 2 while the other one is row deletion at 5, you need insert first then delete.
Otherwise, you may get a wrong result.

Sortable/Filterable List and Tree
We just talked about SortableTableModel and FilterableTableModel. In you still remember,

both models are actually table model wrappers. The same technique can be applied to
ListModel and TreeModel as well.

Corresponding to TableModelWrapper, there are ListModelWrapper and
TreeModelWrapper. Each of them has corresponding sortable and filterable implementations.
See below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

44

SortableListModel and SortableTreeModel
Different from SortableTable, there is no SortableList or SortableTree. The reason is

SortableTable doesn’t really do the sorting. It’s the SortableTableModel who does the sorting.
SortableTable just provides a special table header which can accept mouse clicks. It still
delegates to SortableTableModel to sort the data. In the case of JList and JTree, there is no
header. In fact, there is no uniform way on the UI to make JList or JTree sortable. So there is no
need for SortableList and SortableTree. To make JList sortable,

SortableListModel sortableListModel = new SortableListModel(listModel);
JList sortableList = new JList(sortableListModel);

To sort the list, you just call

sortableListModel.sort(); // or sort(SortableListModel.SORT_DESCENDING) to sort
descending.

Usually you can hook up this action with a button somewhere near the JList or on a local
toolbar.

It’s exactly the same way to make JTree sortable.

FilterableListModel and FilterableTreeModel
FilterableListModel is a list model wrapper which wraps another list model so that user can

apply filters on it. You can use addFilter(Filter) to a filter to the ListModel. By default, filters
won't take effect immediately. You need to call setFiltersApplied(true) to apply those filters. If
filtersApplied flag is true already, you just need to call refresh(). We don't refresh automatically
because you might have several filters to add. You can add all of them, then only call refresh
once.

setFiltersApplied(boolean) controls all the filters. Each filter has its own enabled flag which
will control each individual filter.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

45

By default, if you have more than one filters, all filters will be used in AND mode. You can
see javadoc of setAndMode(boolean) to find more information.

Again, FilterableTreeModel works exactly the same way.

More Filters and CustomFilterEditor
From Filter interface, we created many built-in filters.

Filter Description

EqualFilter Equal
NotEqualFilter Not equal
GreaterThanFilter Greater than
LessThanFilter Less than
GreaterOrEqualFilter Greater than or equal
LessOrEqualFilter Less than or equal
BetweenFilter Between an inclusive range
NotBetweenFilter Not between an inclusive range
LikeFilter Search for a pattern. % is the wildcard for any chars and _ is the wildcard for

one char, similar to SQL LIKE statement
NotLikeFilter Search for opposite of a pattern
WildcardFilter Search for a pattern based using wildcards
RegexFilter Search for a pattern based on regular expression
InFilter If you know the exact value you want to return for at least one of the columns
NotInFilter If you know the exact values you want to exclude
DateOrCalendarFilter An abstract Filter for Date or Calendar filters
 TodayFilter Filter all other dates except today’s date
 YesterdayFilter Filter all other dates except yesterday’s date
 TomorrowFilter Filter all other dates except tomorrow’s date
 ThisWeekFilter Filter all other dates except it is this week
 LastWeekFilter Filter all other dates except it is in the last week
 NextWeekFilter Filter all other dates except it is in the next week
 ThisMonthFilter Filter all other dates except it is this month
 LastMonthFilter Filter all other dates except it is in the last month
 NextMonthFilter Filter all other dates except it is in the next month
 ThisQuarterFilter Filter all other dates except it is in this quarter
 LastQuarterFilter Filter all other dates except it is in the last quarter
 NextQuarterFilter Filter all other dates except it is in the next quarter
 ThisYearFilter Filter all other dates except it is in this year
 LastYearFilter Filter all other dates except it is in the last year
 NextYearFilter Filter all other dates except it is in the next year
 MonthFilter Filter all other dates except the specified month of any year
 QuarterFilter Filter all other dates except the specified quarter of any year
 YearFilter Filter all other dates except the specified year

 As a developer, you can always create those filters using code and add them to
FilterableTableModel, FilterableListModel or FilterableTreeModel and use them. To make it easy
to be used by end users, we create an editor to create filters.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

46

FilterFactoryManager
Different data type support different filters. In order to support this feature, we created

FilterFactoryManager to make it possible. The main method on this class is:

public void registerFilterFactory(Class type, FilterFactory filter)

FilterFactory defines three methods.

public interface FilterFactory {
 Filter createFilter(Object... objects);
 String getConditionString(Locale locale);
 String getName();
 Class[] getExpectedDataTypes();
}

The first createFilter method is to create the filter. The other two methods are there so that
the filter can be created interactively from a user interface. The user interface is
CustomFilterEditor.

We registered four categories of FilterFactory to FilterFactoryManager. They are for
number, string, date/calendar and boolean.

CustomFilterEditor
CustomFilterEditor provides an interface to create a filter based on the data type.

For the string data type, we defined the following filters.

User can select one from the drop down list above and then input the value for the filter.

For example, the selection below will create WildcardFilter same as the code below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

47

WildcardFilter filter = new WildcardFilter();
filter.setBeginWith(true);
filter.setEndWith(false);
return filter;

For numbers (any objects extends Number and the primitives), we predefined the following
filters.

For booleans, we defined the following filters.

For Date or Calendar, we defined the following filters.

Those four data types should be good enough to cover most use cases. If you have other

data type that you want to add, you just need to register them to FilterFactoryManager. For
example, here is the code to register the “begin with” filter on String.

 FilterFactoryManager.registerFilterFactory(String.class, new FilterFactory() {
 public Filter createFilter(Object... objects) {
 WildcardFilter beginWith = new WildcardFilter((String) objects[0]);
 beginWith.setBeginWith(true);
 beginWith.setEndWith(false);
 return beginWith;
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

48

 public Class[] getExpectedDataTypes() {
 return new Class[]{String.class};
 }

 public String getConditionString(Locale locale) {
 return AbstractFilter.getConditionString(locale, “string”, "beginWith");
 }
 });

The getExpectedDataTypes() return an array of data types that this filter needs in order to
define the filter. Please note, in the current release, the CustomFilterEditor only supports two
values. This method returns an array of one class, or two classes. Or it can return a class array if
the Filter expects an array of Objects of the same type, such as

return new Class[]{String[].class};

The getConditionString(Locale) returns the string that will appear in the drop down list.
Since it is a localized string, we use a helper method in AbstractFilter to get it. We defined an
entry like this in filter.properties. The “beginWith” example above will return this entry.

FilterCondition.beginWith.string=begins with

You can follow this pattern to define your own properties if you register your own
FilterFactory.

CustomFilterEditor also has setFilter and getFilter methods. The getFilter method will return
a filter created from the FilterFactory that user selects. The setFilter method will change the
CustomFilterEditor to select the FilterFactory that creates the Filter. Please note, only Filter
created from CustomFilterEditor can be set. Other filters won’t work.

TableCustomFilterEditor
TableCustomFilterEditor is one level above CustomFilterEditor. There are two styles. You can

see both below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

49

Figure 13 TableCustomFilterEditor (two different styles)

As you can see from the screenshots above, CustomFilterEditor is used as a part of the user
interface. CustomFilterEditor creates one Filter. TableCustomFilterEditor adds additional controls
to create a list of FilterItems and they can be added to FilterableTableModel. To get the list of
FilterItems, you can call getFilterItems() method.

Property Pane
In an Object Oriented Design, every object is composed of a combination of data and

function. In Java, we sometimes refer to this data as the ‘properties’ of the object. If you follow
the JavaBean pattern then all properties are exposed via getter and setter methods. If an
application needs to deal with an object’s properties then this can be done by displaying the
name of each property, along with its value. This is the purpose of the PropertyPane, which
displays this information in table form.

Below are two examples of Property Panes, from NetBeans and JBuilder respectively. Both
graphs show the properties of a JButton. As you can see, the JButton has many properties, such
as its background color, foreground color, font, icon, text etc. As you can see, it’s quite intuitive
to display them in a table like this with the property name on the left side and the
corresponding value on the right side.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

50

Figure 14 NetBeans PropertyPane (Above)

Figure 15 JBuilder 9 PropertyPane (Right)

What does a PropertyPane look like?
The picture below shows an example of a property pane, using our PropertyPane class. The

PropertyPane consists of three main parts. The top portion is a toolbar that has buttons which
provide convenient access to some features of the PropertyPane. The middle portion is the
PropertyTable, which displays the name of each property, along with its value. The bottom
portion is the description area, which can be used to provide a more detailed description of
each property.

Since the name of each property is usually very concise, the description area can very
helpful (especially for new users). However, the description area can be hidden when the user
becomes familiar with the properties

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

51

Figure 16 JIDE PropertyPane

The PropertyTable is a two-column table, the first column of which is the name of the
property and the second column is the value of the property. If you wish, you can group sets of
properties into categories, where each category appears as gray bold text, as shown in the
example above. You can collapse categories, which you are not interested in, so that only
properties you are interested in will be shown. You can also have different levels of properties,
as shown in the last row in the example above.

If you have a large number of properties, which makes it hard to find a specific entry, then
you can click on the alphabetic button in the PropertyPane toolbar, so that the properties will be
listed in alphabetic order.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

52

Figure 17 PropertyPane (Alphabetic Order)

As a user, how do I use it?
When you click the mouse on the name column, the row will be selected and the value

column will go into editing mode automatically. The type of editor that is displayed may vary
depending on the type of the data that is being edited. There are basically three types of editors.

TextField editor – For very simple types such as name, number etc.

Dropdown Popup – Rather than letting the user type free-format text, this uses a popup to
help the user select the required value. Usually the popup only needs a single selecting action.
Examples include the Color and Date input editor.

Dialog Popup – If the popup needs multiple selection actions then you should consider using
a Dialog Popup rather than a Dropdown Popup. In addition, you should use the Dialog Popup if
there is an existing dialog that you can leverage. Examples include Font, File and Multiple Line
Description.

TextField editor is very simple and so will not be discussed any further.

Below is an example of a Dropdown Popup, for selecting a color, using a combo-box-like
editor. If you click on the drop down button then the popup will be displayed.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

53

Figure 18 Dropdown Cell Editor

You can also choose a value without going through the popup. Just type in the value you
want in the text field…

…and then press enter. You can see the value is set as you entered it. You should see that

the converter module has been used here to convert the string “255, 0, 255” into a Color value.

Below is an example of a Dialog Popup. Instead of the down arrow button that is used in a

Dropdown popup, a “…” button is displayed. Clicking on this will cause dialog to appear to help
you select a value.

The example below is a file chooser - clicking on the “…” will cause a FileChooser dialog to
pop up.

Figure 19 Dialog Cell Editor

As a developer, how do I use it?
If you are following the standard object bean pattern then it is quite easy to use the

PropertyTable control. However, in the real world, not all objects are compliant with the
standard bean pattern. Furthermore, in many cases we find that we are dealing with a property
which does not exist as an attribute of any single object, but which is instead calculated ‘on the
fly’, based on the values of a number of attributes. Based on our experience of dealing with this
sort of situation, we created a class called Property - not surprisingly, it is an abstract class.

Property defines the following methods as abstract, so you need to write your own Property
class that extends Property and implement these three methods:

public abstract void setValue(Object value);
public abstract Object getValue();
public abstract boolean hasValue();

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

54

Things become much easier once you have created a concrete descendant of the Property
class. Then, all you need to do is to create a list of your Property objects, as an ArrayList and use
this ArrayList to create a PropertyTableModel.

ArrayList list = new ArrayList();
Property property = new ….. // create property
list.add(property);

// add more properties

PropertyTableModel model = new PropertyTableModel(list);
PropertyTable table = new PropertyTable(model);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

55

BeanProperty and BeanIntrospector
The Property class provides an abstract implementation. If you want to use PropertyTable to

display JavaBean properties, it will be too tedious to create a list of properties manually. To
address this requirement, we introduced a concrete class called BeanProperty. BeanProperty
implements Property on top of PropertyDescriptor which is part of JDK JavaBean
implementation.

We introduced another class call BeanIntrospector to help you introspect JavaBean.
BeanIntrospector, will create a list of properties which can be used by PropertyTableModel.

There are four different ways to create a BeanIntrospector.

1. Given an object, if it’s fully JavaBean compatible and there is corresponding BeanInfo
class, you can use BeanIntrospector(Class clazz, BeanInfo beanInfo) to create a
BeanIntrospector.

2. If you know exactly the list of property names of the object but you don’t want to
create a BeanInfo, you can use BeanIntrospector(Class clazz, String[] properties) and
give introspector the information of the properties. The array of properties is in the
format of

 new String[] {
 "propertyName1", "propertyDescription1", "propertyCategory1",
 "propertyName2", "propertyDescription2", "propertyCategory2",
 ...
 };

So if you have n properties, the array length should be have 3*n. This array will tell
BeanIntrospector what the properties are as well as the description and category
which are both part of Property.

3. In this case, you know exactly the list of property names, just like in case 2. However
you don’t want to hard code the property name into source code. We provide a way
to load the property definition from XML file. The XML file looks like this.

<Properties>
 <Property name="…" displayName="…" description="…" category="…"/>
 <Property name="…" displayName="…" description="…" category="…"/>
 …
</Properties>

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

56

Possible attributes for Property element in the XML are "name", "displayName",
"value", "type", "description", "dependingProperties", "category",
"converterContext", "editorContext", "editable", and "autoIntrospect".

The XML file could be at any place where the code can access. However we suggest
you put it at the same package of the object class definition and copy it as resource
file to class output directory so that you can use class loader to load it. There are two
constructors for this case, BeanIntrospector(Class clazz, String fileName) and
BeanIntrospector(Class clazz, InputStream in). The first one used to load property XML
as a file. The second one is to load it using class loader.

4. The last case is you want to completely depend on Java reflection to find all
properties. You can use constructor BeanIntrospector(Class clazz) in this case. If using
this way, it will find a lot more properties than you need. Typically you don’t want to
use this way. However it is not a bad idea to use this in development phase to get the
complete list of properties, and then go through each one and determine which ones
you want. In production phase, you should use the first three ways and only show the
properties you want.

For example, if you use reflection to introspect Rectangle.class, you will get 18
properties. Most of them are useless. See the first picture below. In fact, you just
need to have a string array as below.

 public static final String[] RECTANGLE_PROPERTIES = new String[]{
 "x", "x", "",
 "y", "y", "",
 "width", "width", "",
 "height", "height", ""
 };

And use the second way to create the introspector, and you got the property table like
in the second picture.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

57

After you create the BeanIntrospector, you can further customize it by calling

getProperty(String name) to get the BeanProperty and then call setConverterContext() and
setEditorContext() etc.

BeanIntropector has a method called createPropertyTableModel(Object object). It will create
a PropertyTableModel that can be used by PropertyTable.

Now let’s go through a real example to create and configure BeanIntrospector to inspect the
properties of DockableFrame.

First, let’s use constructor BeanIntrospector(DockableFrame.class) to create an introspector
first, then call createPropertyTableModel and set the model on PropertyTable. Here is what you
will see.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

58

Figure 20 BeanInstrospector on DockableFrame.class

There are more than 140 properties when we tried the first time. It’s too many if we show
all of them so we just take part of them as an example and show it above. After looking through
each of them, we come up with a list of properties we want to expose. Then we create a String
array of the properties we want and use constructor BeanIntrospector(Class clazz, String[]
properties) to create an introspector. See below. As you can see, there are only 22 properties.
And they are properly categorized.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

59

Figure 21 BeanInstrospector on DockableFrame.class with proper categories

It’s much better but there are still a few issues. For example, initMode property is shown as
a regular integer cell. Yes, the type of the property is indeed int.class but the valid values are
defined in DockContext such as hidden, floating, docked or autohidden etc. It will be very
unusable if let you remember the mapping. It’s very easy to solve. All you need is to create an
EnumConverter that maps correctly from int value to a string value as well as corresponding
EnumCellRenderer/Editor.

EnumConverter dockModeConverter = new EnumConverter("DockMode-
DockableFrame", int.class,

 new Object[]{
 new Integer(DockContext.STATE_HIDDEN),
 new Integer(DockContext.STATE_FLOATING),
 new Integer(DockContext.STATE_AUTOHIDE),
 new Integer(DockContext.STATE_AUTOHIDE_SHOWING),
 new Integer(DockContext.STATE_FRAMEDOCKED)
 },
 new String[]{
 "Hidden",
 "Floating",

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

60

 "Autohidden",
 "Autohidden (showing)",
 "Docked"},
 new Integer(DockContext.STATE_HIDDEN));
ObjectConverterManager.registerConverter(dockModeConverter.getType(),

dockModeConverter, dockModeConverter.getContext());
EnumCellRenderer dockModeRenderer = new EnumCellRenderer(dockModeConverter);
EnumCellEditor dockModeEditor = new EnumCellEditor(dockModeConverter);
CellRendererManager.registerRenderer(dockModeConverter.getType(),

dockModeRenderer, dockModeRenderer.getContext());
CellEditorManager.registerEditor(dockModeConverter.getType(), dockModeEditor,

dockModeEditor.getContext());

DOCKABLE_FRAME_INTROSPECTOR.getProperty("InitMode").setConverterContext(dockM
odeConverter.getContext());

DOCKABLE_FRAME_INTROSPECTOR.getProperty("InitMode").setEditorContext(dockMo
deEditor.getContext());

The same thing applies initSide property.

The next thing we noticed is the undockedBounds property. The type is Rectangle.class.
Since we have RectangleConverter, the rectangle value is converted to a semi-colon delimited
string. The values are in the order of x, y, width and height. If user types in that format, it will be
converted to rectangle. However it’s not user-friendly. A better approach is to make
undockedBounds expandable so that the value of x, y, width, height can be modified in child
properties. To make it happen, you need to call the following.

DOCKABLE_FRAME_INTROSPECTOR.getProperty(DockableFra
me.PROPERTY_UNDOCKED_BOUNDS).setAutoIntrospect(true);

After a few customizations, we got the screen shot on your
right. As you can see, initMode and initSide properties are now
combobox. User can choose the meaningful value directly from
the list. The undockedBounds property has child properties so
that user can change the x, y, width or height directly.

We provide many built-in cell editors in JIDE Grids product
as you will see in the following sections. However there is no
way we can cover all your need. When you have a custom data
type, you may need to write your own cell editor/cell

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

61

renderer/converter in order to allow user editing that certain type in PropertyTable.

Color Related Components

ColorChooserPanel
ColorChooserPanel is a panel that has many color buttons that the user can click on to select

the required color. This class supports the ItemListener. An itemStateChanged event will be fired
whenever a color is selected.

We support several color sets, including the 15 basic RGB colors, 40 basic colors and 215
web colors.

Figure 22 ColorChooserPanel (15 colors)

Figure 23 ColorChooserPanel (40 colors)

Figure 24 ColorChooserPanel (215 web-safe colors)

In additional to color choosers, we also support gray scale - from 16 gray scales, 102 gray
scales and 256 gray scales.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

62

Figure 25 ColorChooserPanel (16 gray scale)

Figure 26 ColorChooserPanel (102 gray scales)

Color(Ex)ComboBox
Unsurprisingly, the Color(Ex)ComboBox is a combo box that can choose colors. It uses

ColorChooserPanel as dropdown popup, as shown below:

Figure 27 ColorComboBox

Keyboard Support
Color(Ex)ComboBox and ColorChooserPanel supports keyboard-only environment.

When Popup is hidden

ALT + DOWN To Bring up the popup

When Popup is visible

ESC Hide the popup without changing the selection

LEFT Previous color to the same row. If at the beginning of
a row, go to last color of previous row

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

63

RIGHT Next color to the same row. If at the end of a row, go
to first color of next row.

UP Color at the same column of the previous row

DOWN Color at the same column of the next row

HOME First color

END Last color

ENTER Select the highlighted color and hide popup

Date Related Component

DateChooserPanel
Similarly to the ColorChooserPanel, the DateChooserPanel is also a popup panel, which

allows the user to choose a Date value (again, providing ItemListener events, as appropriate).

Figure 28 DateChooserPanel / Choosing Year

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

64

Figure 29 DateChooserPanel (Choosing Month)

Figure 30 DateChooserPanel
(hide week of year panel, “Today” and “None” button which are all optional)

DateChooserPanel dateChooserPanel = new DateChooserPanel();
dateChooserPanel.setShowWeekNumbers(true/false);
dateChooserPanel.setShowTodayButton (true/false);
dateChooserPanel.setShowNoneButton(true/false);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

65

Figure 31 DateChooserPanel (all dates after Aug 13, 2003 are disabled)

// create a DateModel first
DefaultDateModel model = new DefaultDateModel();

// setMaxDate of DateModel to Aug 13, 2003
Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.YEAR, 2003);
calendar.set(Calendar.MONTH, Calendar.AUGUST);
calendar.set(Calendar.DAY_OF_MONTH, 13);
model.setMaxDate(calendar);

// create DateChooserPanel with that model.
DateChooserPanel dateChooserPanel = new DateChooserPanel(model);

Figure 32 DateChooserPanel (any weekends are disabled)

// create a DateModel first
DefaultDateModel model = new DefaultDateModel();

// add DateFilter to allow WEEKDAY_ONLY

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

66

model.addDateFilter(DefaultDateModel.WEEKDAY_ONLY);

// create DateChooserPanel with that model.
DateChooserPanel dateChooserPanel = new DateChooserPanel(model);

Figure 33 DateChooserPanel (Localized Version de)

DateChooserPanel supports multiple selections. There are three selection modes. The first is
SINGLE_SELECTION, meaning only one date can be selected at one time. This is the default
mode. Since JIDE v1.9.1 release, we introduced two new selection modes - SINGLE_INTERVAL
and MULTIPLE_INTERVAL. SINGLE_INTERVAL is perfect to choose a data range. See a screenshot
below.

Figure 34 SINGLE_INTERVAL Selection Mode

MULTIPLE_INTERVAL mode allows user to choose multiple data ranges. See a screenshot
below. You can use this mode to display things like all holidays within current year, an
employee’s vacation days etc.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

67

Figure 35 MULTIPLE_INTERVAL Selection Mode

User can use keyboard or mouse with the help of CTRL (or Command key on Mac OS X) and
SHITF key to do multiple selections. The way to use it is the same as using multiple selections in
JList.

When DateChooserPanel is in single selection mode, you can use setSelectedDate() and
getSelectedDate() to set and get the selection. However in multiple selection mode (including
both single interval or multiple interval), you need getSelectionModel() to get the
DateSelectionModel first, then call getSelectedDates() or setSelectedDates(Date[] dates) or other
methods to get or change the selections.

There is also a view-only mode DateChooserPanel, as shown
here. In view-only mode, although setDisplayedMonth() can be
used to select which month you want to display. There is no next
month or previous month button so the user will not be able to
change it. User cannot select any date either.

Figure 36 View-only Mode

You can also customize the date label, day of week label, and
the month and year labels to show some special effect. To do so,
simply create a class extending DateChooserPanel, overriding the
appropriate methods to get the visual effect that you want.

To the right is a simple example that makes each cell bigger,
grays the weekends, and shows an example icon on the “Today”
date.

Figure 37 Customized Label in View-only Mode

The methods you can override are: createDateLabel, updateDateLabel,
createDayOfWeekLabel, updateDayOfWeekLabel, createMonthLabel, updateMonthLabel,
createYearLabel and updateYearLabel. The default create methods will simply create a standard
JideButton. Your implementations can override this behavior to create whatever JComponent
you want. The update methods will update the actual value of the labels. Since the date is
passed in as parameter to all update methods, so you can check the date and do whatever you

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

68

want to the labels. For example you could look up in a database and find out if there are any
historic events on that date and add a special icon if so (perhaps adding a MouseListener to
trigger some other behavior).

Date(Ex)ComboBox
A Date(Ex)ComboBox is a combo box that can choose a date, using a DateChooserPanel as a

dropdown popup.

Figure 38 DateComboBox

Keyboard Support
Date(Ex)ComboBox and DateChooserPanel supports a keyboard-only environment.

When Popup is hidden

ALT + DOWN To Bring up the popup

When Popup is visible

ESC Hide the popup without changing the selection

LEFT Previous day of the selected day

RIGHT Next day of the selected day

UP Same day of the last week

DOWN Same day of the next week

HOME First day of this month

END Last day of this month

PAGE_UP Same day of the last month

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

69

PAGE_DOWN Same day of the next month

CTRL + PAGE_UP Same day of the last year

CTRL+ PAGE_DOWN Same day of the next year

ENTER Select the highlighted date and hide popup

CalendarViewer

Figure 39 CalendarViewer of 12 month view with multiple selection

CalendarViewer uses several DateChooserPanels to create a Calendar view. You can choose
how many months you want to view. It also supports multiple selections just like
DateChooserPanel. CalendarViewer uses DateSelectionModel to keep track of selection, which is
same as DateChooserPanel.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

70

Figure 40 CalendarViewer with three month view

ComboBox Extension
JComboBox is a very useful component. However, it is very limited as you can only use it to

choose a value from a JList. People always wants a more customizable dropdown. To solve this
limitation, we tried two different approaches. Due the limitation of Swing itself, each approach
has its own pros and cons. The table below shows a comparison overview.

 AbstractComboBox ExComboBox
Visual Appearance Similar to JComboBox but not

always the same.
Always the same as JComboBox

Built-in support for
L&Fs

Most L&Fs even some 3rd parties
L&Fs but doesn’t look identical to
the JComboBox on those L&Fs; not
look good on Aqua L&F

Out-of-box support for Windows, Metal,
Aqua, Synthetica etc. L&F perfectly. For
other 3rd party L&F, UI class needs to be
implemented. Once implemented, it will
support perfectly

Extensible Yes Yes but not as great as AbstractComboBox
Compatibility Incompatible with JComboBox

although most methods on
JComboBox are also available on it

Extend JComboBox so it is fully compatible
with JComboBox

AbstractComboBox basically creates a brand new component and tried to mimic what
JComboBox does. It doesn’t extend JComboBox. Since it is a new component, we literally can do
whatever we want to it. For example, you can choose your own button for the combobox’s drop
down button. You can have your own editor for the editor part of the combobox. However, it is
very difficult to keep the same look and behavior as JComboBox. We managed to do it for
Windows L&F and some other L&Fs but for Aqua L&F, it is almost impossible to make it look
identical to Aqua’s JComboBox.

ExComboBox took a different approach. It extends JComboBox and provides several UI
classes extend BasicComboBoxUI, WindowsComboBoxUI, AquaComboBoxUI respectively to
provide the additional features we want. Since the same UI is used, we get the same look and
behavior as JComboBox. The main downside is you have to subclass the corresponding
ComboBoxUI for that L&F in order to support the new L&F. It is also not easy to customize the
editor area as AbstractComboBox can.

A ComboBox has three parts – a text field editor, a button, and popup that appears when
the button is pressed. The AbstractComboBox will allow you to customize all three parts.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

71

ExComboBox only allows you to customize the button and the popup. Since in most cases, the
popup is the main part that needs customization, both approaches will work.

Both AbstractComboBox and ExComboBox have these two methods that you can implement
or override when extending.

 /**
 * Subclass should implement this method to create the actual popup component.
 * @return the popup component
 */
 abstract public PopupPanel createPopupComponent();

 /**
 * Subclass should override this method to create the actual button component.
 * If subclass doesn't implement or it returns null, a default button will be created. If

type is DROPDOWN,
 * down arrow button will be used. If type is DIALOG, "..." button will be used.
 * @return the button component
 */
 public AbstractButton createButtonComponent() {
 return null;
 }

AbstractComboBox has an addition method.

/**
 * Subclass should implement this method to create the actual editor component.
 * @return the editor component
 */
 public abstract EditorComponent createEditorComponent();

The ComboBox's dropdown popup is handled by PopupPanel. All dropdown popup must
extend PopupPanel. For JComboBox, we create List(Ex)ComboBox which uses ListChooserPanel
(extending PopupPanel) as the popup. Likewise, in the case of Color(Ex)ComboBox, it’s a
ColorChooserPanel. Usually people use popup to select things, so the PopupPanel contains
common methods for all pop ups, such as knowing how to select an item and how to fire an
item event when the selection changes. Please note that although PopupPanel is usually used as
a DropDown popup, it can also be used in a dialog (a FileChooserPanel for example). In the other
word, when clicking on the dropdown button on a combobox, a dialog pops up. Note also that
you do have the choice of using DROPDOWN and DIALOG when using AbstractComboBox or
ExComboBox.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

72

The Button part of ComboBox is used to trigger the popup. By default, if it is a drop down
popup then we use a button with a down arrow. Conversely, if it is a dialog popup then we use a
button with “…” as the text of the button, or if you want, you can use "open" as the text.
However in the default cases, we don’t change the button because it doesn’t look very
consistent on some L&Fs if changing the text or the look.

For AbstractComboBox, the EditorComponent is the text field editor (actually a JPanel). If
you replace this with a JTextField then it becomes normal JComboBox. Although you can create
your own EditorComponent you must make sure that it extends an EditorComponent and that it
implements getValue and setValue (so that AbstractComboBox knows how to set and get
values).

Below shows an example code of a custom ComboBox – StringArrayComboBox.

public class StringArrayComboBox extends AbstractComboBox {
 public StringArrayComboBox() {
 super(DIALOG);
 setType(String[].class);
 initComponent(); // it is very important to call this method in your constructor
 }

 @Override
 public EditorComponent createEditorComponent() {
 if (isEditable()) {
 return new DefaultTextFieldEditorComponent(getType());
 }
 else {
 return new DefaultRendererComponent(getType());
 }
 }

 @Override
 public PopupPanel createPopupComponent() {
 return new

StringArrayPopupPanel(Resource.getResourceBundle(Locale.getDefault()).getString("Com
boBox.stringArrayTitle"));

 }

If you want to an ExComboBox, it is even simpler.

public class StringArrayExComboBox extends ExComboBox {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

73

 public StringArrayExComboBox() {
 super(DIALOG);
 setType(String[].class);
 }

 @Override
 public PopupPanel createPopupComponent() {
 return new

StringArrayPopupPanel(Resource.getResourceBundle(Locale.getDefault()).getString("Com
boBox.stringArrayTitle"));

 }

The main difference is you don't need to createEditorComponent in ExComboBox because,
as it mentioned before, ExComboBox doesn't allow you to change editor component.

Both classes use the same StringArrayPopupPanel. This is the main place you need to create
a panel that knows how to edit a String array. In our case, we used a simple JTextArea to do it.
See below.

/**
 * A popup panel for String array.
 */
public class StringArrayPopupPanel extends PopupPanel {
 JTextArea _textArea = new JTextArea();

 public StringArrayPopupPanel() {
 this("");
 }

 public StringArrayPopupPanel(String title) {
 JScrollPane scrollPane = new JScrollPane(_textArea);
 scrollPane.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
 scrollPane.setAutoscrolls(true);
 scrollPane.setPreferredSize(new Dimension(300, 200));
 setBorder(BorderFactory.createEmptyBorder(10, 5, 5, 5));
 setLayout(new BorderLayout());
 add(scrollPane, BorderLayout.CENTER);
 setTitle(title);
 setDefaultFocusComponent(_textArea);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

74

 }

 @Override
 public Object getSelectedObject() {
 String text = _textArea.getText();
 return text.split("\n");
 }

 @Override
 public void setSelectedObject(Object selected) {
 if (selected != null && selected.getClass().isArray()) {
 if (((Object[]) selected).length == 0) {
 _textArea.setText("");
 return;
 }
 String[] list = (String[]) selected;
 StringBuffer buf = new StringBuffer();
 for (int i = 0; i < list.length; i++) {
 if (i > 0)
 buf.append("\n");
 buf.append(list[i]);
 }
 _textArea.setText(buf.toString());
 }
 }
}

Available ExComboBoxes
See below for a list of available ExComboBoxes. If we categorized them by the component

on the popup, there are

1. JList (ListExComboBox or MultiSelectListExComboBox which supports multiple
selects)

2. JTable (TableExComboBox)

3. JTree (TreeExComboBox).

4. CheckBoxList (CheckBoxListExComboBox)

If we categorized by the data type of the combo box's selected item, they are

1. Date.class (DateExComboBox or MonthExComboBox)

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

75

2. Color.class (ColorExComboBox)

3. Font.class (FontExComboBox)

4. Insets.class (InsetsExComboBox)

5. File.class (FileChooserExComboBox)

6. String.class but the String is a file name (FileNameChooserExComboBox)

7. String[].class - String Array (StringArrayExComboBox)

8. String.class but it is a multiple line string (MultilineStringExComboBox)

See below for a screenshot of a Tree(Ex)ComboBox.

Tree(Ex)ComboBox uses JTree as the component on the popup. The usage of TreeComboBox

is very intuitive. There are only two points that worth mentioning.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

76

First, different from JList, not all tree nodes in a tree are valid selection. In many cases, you
only want the leaf node to be selected. So Tree(Ex)ComboBox allows you to add your own code
to determine if a TreePath is valid selection. All you need to do is to overwrite
isValidSelection(TreePath path). By default, it always returns true, meaning all tree nodes are
valid selections. If you want only leaf node to be selectable, you can write something like this in
subclass.

 protected boolean isValidSelection(TreePath path) {
 TreeNode treeNode = (TreeNode) path.getLastPathComponent();
 return treeNode.isLeaf();
 }

The second point is the conversion from TreePath to String. You need to provide an
algorithm to convert from the selected TreePath to a string so that the string can be displayed in
the text field of ComboBox. The algorithm is in a method called converElementToString(). Below
is the default implementation of this method in TreeComboBox. You can see it simply uses
toString to convert the tree node to string. Subclass can overwrite this method to do your own
conversion. For example, you can convert the selected path in the screenshot above to “JTree ->
sports -> football” if it makes sense in your application.

 protected String convertElementToString(Object object) {
 if (object instanceof TreePath) {
 Object treeNode = ((TreePath) object).getLastPathComponent();
 return treeNode.toString();
 }
 else if (object != null) {
 return object.toString();
 }
 else {
 return "";
 }
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

77

More Screenshots. They are FontExComboBox, MonthExComboBox, InsetsExComboBox,
CheckBoxListExComboBox and TableExComboBox respectively.

Supporting 3rd Party L&F for ExComboBox
ExComboBox has its own Combobox UI that extends the corresponding ComboBoxUI of the

L&F. For example we have WindowsExComboBoxUI extends WindowsComboBoxUI. That's how
it supports Windows L&F. We also have AquaExComboBoxUI, MetalExComboBoxUI,
SynthExComboBox etc. to support other JDK L&Fs. However, if you want to use ExComboBox
with other 3rd party L&Fs, you need to provide a UI for it.

I included the full source code for PlasticExComboBoxUI below as an example. Then make
sure you call UIManager.put("ExComboBoxUI", " com.jidesoft.plaf.plastic.PasticExComboBoxUI")
after you set the Plastic L&F. You may need to tweak to the source code if the UI class you are
extending override some methods we also override but it shouldn't be too hard to figure out.

package com.jidesoft.plaf.plastic;

import com.jgoodies.looks.plastic.PlasticComboBoxUI;
import com.jidesoft.combobox.ExComboBox;
import com.jidesoft.combobox.PopupPanel;
import com.jidesoft.plaf.ExComboBoxUI;
import com.jidesoft.plaf.basic.ExComboBoxEditor;
import com.jidesoft.plaf.basic.ExComboBoxFocusListener;

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

78

import com.jidesoft.plaf.basic.ExComboBoxPopup;
import com.jidesoft.plaf.basic.ExComboBoxRenderer;

import javax.swing.*;
import javax.swing.plaf.ComponentUI;
import javax.swing.plaf.basic.ComboPopup;
import java.awt.event.FocusListener;

public class PlasticExComboBoxUI extends PlasticComboBoxUI implements

ExComboBoxUI {
 public static ComponentUI createUI(JComponent c) {
 return new PlasticExComboBoxUI();
 }

 protected ExComboBox _comboBox;

 @Override
 public void installUI(JComponent c) {
 if (c instanceof ExComboBox) {
 _comboBox = ((ExComboBox) c);
 }
 super.installUI(c);
 }

 @Override
 protected JButton createArrowButton() {
 if (_comboBox != null) {
 AbstractButton button = _comboBox.createButtonComponent();
 if (button instanceof JButton) {
 return (JButton) button;
 }
 }
 JButton button = super.createArrowButton();
 comboBox.putClientProperty("doNotCancelPopup",

button.getClientProperty("doNotCancelPopup"));
 return button;
 }

 @Override
 protected ComboPopup createPopup() {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

79

 return new ExComboBoxPopup(_comboBox);
 }

 @Override
 protected ListCellRenderer createRenderer() {
 return new ExComboBoxRenderer(super.createRenderer(), _comboBox);
 }

 @Override
 protected ComboBoxEditor createEditor() {
 return new ExComboBoxEditor(super.createEditor(), _comboBox);
 }

 public PopupPanel getPopupPanel() {
 return ((ExComboBoxPopup) popup).getPopupPanel();
 }

 @Override
 public void configureEditor() {
 super.configureEditor();
 FocusListener[] focusListeners = editor.getFocusListeners();
 for (FocusListener listener : focusListeners) {
 if (listener.getClass().getName().indexOf("BasicComboBoxUI") != -1) {
 editor.removeFocusListener(listener);
 }
 }
 }

 @Override
 protected FocusListener createFocusListener() {
 return new ExComboBoxFocusListener(_comboBox, super.createFocusListener());
 }
}

How to create your own Cell Renderer and Cell Editor
In this section, we will use FontNameCellEditor as an example to illustrate how to create

your own cell renderer and cell editor that is compatible with the rest of JIDE Grids.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

80

First of all, we need to decide what the type of this property is. In the case of font face
name, the type is String. However not all strings are valid font face name. That’s why we need a
converter for it. See below. In fromString() method, we enumerate all available font names in
current environment. If the String is one of the known font names, we return the String. Or else,
return null because the String is not valid font name.

public class FontNameConverter implements ObjectConverter {
 /**
 * ConverterContext for a font name.
 */
 public static ConverterContext CONTEXT = new ConverterContext("FontName");

 public String toString(Object object, ConverterContext context) {
 if (object == null || !(object instanceof String)) {
 return null;
 }
 else {
 return (String) object;
 }
 }

 public boolean supportToString(Object object, ConverterContext context) {
 return true;
 }

 public Object fromString(String string, ConverterContext context) {
 if (string.length() == 0) {
 return null;
 }
 else {
 String[] font_names =

GraphicsEnvironment.getLocalGraphicsEnvironment().getAvailableFontFamilyNames();
 for (int i = 0; i < font_names.length; i++) { // check font if it is available
 String font_name = font_names[i];
 if (font_name.equals(string)) {
 return string;
 }
 }
 return null;
 }
 }

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

81

 public boolean supportFromString(String string, ConverterContext context) {
 return true;
 }
}

Next, we need to create a cell editor. We use ListComboBoxCellEditor as the base class.
Please note, you can also extend AbstractComboBoxCellEditor or TextFieldCellEditor, depending
what you need from the base class.

/**
 * CellEditor for FontFace.
 */
public class FontNameCellEditor extends ListComboBoxCellEditor {

 public final static EditorContext CONTEXT = new EditorContext("FontName");

 /**
 * Creates FontNameCellEditor.
 */
 public FontNameCellEditor() {
 super(new FontNameComboBoxModel());
 }

 /**
 * Model for the font style drop down.
 */
 private static class FontNameComboBoxModel extends AbstractListModel

implements ComboBoxModel {

 /** An array of the names of all the available fonts. */
 private String[] _fontNames = null;

 /** The currently selected item. */
 private Object _selectedFontName;

 /**
 * Create a custom data model for a JComboBox.
 */

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

82

 protected FontNameComboBoxModel() {
 _fontNames =

GraphicsEnvironment.getLocalGraphicsEnvironment().getAvailableFontFamilyNames();
 }

 public void setSelectedItem(Object selection) {
 this._selectedFontName = selection;
 fireContentsChanged(this, -1, -1);
 }

 /**
 * Chooses a Font from the available list.
 * @param font The font to make current
 */
 public void setSelectedFont(Font font) {
 for (int i = 0; i < _fontNames.length; i++) {
 if (font.getFontName().equals(_fontNames[i])) {
 setSelectedItem(getElementAt(i));
 }
 }

 fireContentsChanged(this, -1, -1);
 }

 public Object getSelectedItem() {
 return _selectedFontName;
 }

 public int getSize() {
 return _fontNames.length;
 }

 public Object getElementAt(int index) {
 return _fontNames[index];
 }
 }
}

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

83

Please note, in both converter and cell editor, we have a context object. We need them
because the type is String type which has been taken to register StringConverter and
StringCellEditor. We will need the context object to register with our own converter and cell
editor with ObjectConverterManager and CellEditorManager. So here is the last thing you need
to do.

ObjectConverterManager.registerConverter(String.class, new FontNameConverter(),
FontNameConverter.CONTEXT);

CellEditorManager.registerEditor(String.class, new FontNameCellEditor(),
FontNameCellEditor.CONTEXT);

To try it out, you just need to create a Property which type is String.class, converter context
is FontNameConverter.CONTEXT and editor context is FontNameCellEditor.CONTEXT. If you add this
property to PropertyTableModel, PropertyTable will automatically use FontNameCellEditor to
edit this Property and use FontNameConverter to validate the font name.

Below is another example of custom CellEditor. It continues from the StringArrayComboBox
example above. Now we will make it a CellEditor.

/**
 * A String array cell editor.
 */
public class StringArrayCellEditor extends ContextSensitiveCellEditor implements

TableCellEditor {

 private StringArrayComboBox _comboBox;

 /**
 * Creates a FileNameCellEditor.
 */
 public StringArrayCellEditor() {
 _comboBox = new StringArrayComboBox();
 _comboBox.setBorder(BorderFactory.createEmptyBorder());
 }

 /**
 * Gets the value of the cell editor.
 *
 * @return the value in this cell editor.
 */
 public Object getCellEditorValue() {
 _comboBox.setSelectedItem(_comboBox.getEditor().getItem());

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

84

 return _comboBox.getArray();
 }

 public Component getTableCellEditorComponent(JTable table, Object value,
 boolean isSelected,
 int row, int column) {
 if (table != null) {
 JideSwingUtilities.installColorsAndFont(_comboBox, table.getBackground(),

table.getForeground(), table.getFont());
 }
 _comboBox.setArray((String[]) value);
 _comboBox.setConverterContext(getConverterContext());
 return _comboBox;
 }

 public boolean stopCellEditing() {
 _comboBox.setPopupVisible(false);
 return super.stopCellEditing();
 }
}

Hierarchical Table
HierarchicalTable is special type of table which can display any components hierarchically

inside the table itself. (TreeTable can also display hierarchical information, but the information
in TreeTable is limited to all rows being the same format. In HierarchicalTable, you can display
any components.)

See below for three examples of hierarchical tables. They look quite different from each
other, but they are all done using HierarchicalTable.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

85

Figure 41 Examples of Hierarchical Tables

From the screenshots, you probably are surprised by what HierarchicalTable can do. The
child component of each row is not limited to table. It could be anything. That’s the power of
HierarchicalTable.

There are actual three tables in the second example. Each has different background colors.
The top level has four rows; each row is a JIDE product. You can further expand each row to
display components or features in that product. Furthermore, for each features, you can see
further details. Now three tables are organized in a hierarchical way, this is also why it is called
HierarchicalTable.

The last one is the famous user interface of Windows Control Panel’s Add/Remove Program
dialog. People ask us how to do it but didn’t realize HierarchicalTable provides build-in support
for. The trick is the child component will cover the parent row if it returns false in
isHierarchical(int row) method of HierarchicalTableModel.

HierarchicalTableModel
There are only two major classes in HierarchicalTable component. One is very obvious, the

HierarchicalTable. The other one is called HierarchicalTableModel. HierarchicalTableModel is an

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

86

interface but it doesn’t extend TableModel. We named it XxxTableModel because we expect you
always use it with either TableModel, or AbstractTableModel or DefaultTableModel. There are
three methods in this interface; see below.

 /**
 * Checks if the row has child.
 *
 * @param row the row index
 * @return true if the row has child. Otherwise false.
 */
 boolean hasChild(int row);

 /**
 * Returns true if the child component will be shown in a new row. Returns false is the

child
 * component will replace the current row.
 *
 * @param row
 * @return true if the child component will be shown in a new row. Otherwise false

which means the child
 * component will replace the current row when displaying.
 */
 boolean isHierarchical(int row);

 /**
 * Gets the child object value associated with the row at row index.
 *
 * @param row
 * @return the value. If child components are the same except the displaying is

different, it's better to
 * return a value using this method. Then the component factory can create the same

component and only
 * load a different value to that component. You can also return null in this method. If

so,
 * the component factory can look up in the table model on fly and find out how to

create the child component.
 */
 Object getChildValueAt(int row);

 /**
 * Returns true if the row is expandable. This only makes sense when hasChild() return

true. If there is child and

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

87

 * but not expandable, you will see a gray "+" icon but click on it does nothing.
 *
 * @param row
 * @return true if the row is expandable.
 */
 boolean isExpandable(int row);

Here are two typical usages of HierarchicalTableModel.

class ProductTableModel extends DefaultTableModel implements
HierarchicalTableModel {

 ……
}

or

class ProductTableModel extends AbstractTableModel implements
HierarchicalTableModel {

 ……
}

So in addition to implement methods defined in TableModel, you also need to implement
the three methods defined in HierarchicalTableModel.

HierarchicalTable
As you probably noticed, HierarchicalTableModel only returns a value and doesn’t have

code to create a component to be display in HierarchicalTable. We added a new method to
HierarchicalTable called setComponentFactory. You can use this method to associate a
HierarchicalTableComponentFactory object with HierarchicalTable. It’s
HierarchicalTableComponentFactory’s responsibility to create components and destroy
components.

HierarchicalTable extends SortableTable, which indicates our HierarchicalTable can be
sorted. In case you don’t want it to be sortable, just call setSortable(false).

In addition to methods defined in JTable and SortableTable, HierarchicalTable defined
several of its own methods.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

88

HierarchicalTable has one special column called the hierarchical column. If a column is the
hierarchical column, there will be an expand/collapse icon on the left side of any cells in that
column. Clicking on that button will expand/collapse. By default, the first column is the
hierarchical column. If you want to control when to expand/collapse all by yourself, you can call
setHierarchicalColumn(-1). For example, at the screenshot below, the hierarchical column is 1
(the 2nd column since the column index is starting from 0).

Figure 42 HierarchicalTable when the hierarchical column is 1

There is another attribute called singleExpansion. Typically when user expands a row, and
then expands another row, the first expanded row will remain expanded. However there are
case user wants only one row to be expanded at a time. The attribute singleExpansion can be
used in this case. True means only one row can expanded at a time. Default is false.

Container for Child Component
Among the four methods of HierarchicalTableModel, the most important method is

getChildValueAt(int row). Basically for each row, you can associate a value with it. This value can
be used in HierarchicalTableComponentFactory to create a child component for each row when
the row is expanded. How you write this component is completely up to you. As usual, we
created several classes you can leverage. They are HierarchicalPanel and
TreeLikeHierarchicalPanel.

HierarchicalPanel is a special JPanel which will always respect the preferred height of the
component it contains. So instead of returning the child component directly in
getChildComponent(int row), wrap it in HierarchicalPanel and return the HierarchicalPanel. That
way, when the child component height changes, HierarchicalPanel’s height will adjust to the
new height automatically. This may be a little hard to understand, but if you try to expand a
child component, one with HierarchicalPanel and the other with regular JPanel, you will notice
the difference.

HierarchicalPanel also has a border of BorderFactory.createEmptyBorder(0, 14, 1, 0), which
will match with the margin of the expand/collapse icon when the expandable column is 0.
However you can pass in any border to HierarchicalPanel.

To make HierarchicalTable more like a tree, we also
prepared TreeLikeHierarchicalPanel. It’ll draw a hash line on
the left margin, just like in JTree. See the red circled area in
the left screenshot. You can tell from the name of
TreeLikeHierarchicalPanel that it extends HierarchicalPanel. If
you plan to create your own style of HierarchicalPanel, we
suggest you also make it extend HierarchicalPanel.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

89

Maintaining single selection
When the child components in HierarchicalTable are also tables, sometimes you want to

keep one selection at a time. However since those are different table components and have
their own ListSelectionModels, you will end up with each table has its own row selected. To
address this issue, we created a class called ListSelectionModelGroup. The name comes from
ButtonGroup which keeps an exclusive selection for a group of buttons.
ListSelectionModelGroup will keep exclusive selection for a group of ListSelectonModel. To add a
ListSelectionModel to the group, you just call add() method. After the ListSelectionModel is
gone, call remove() method. This matches perfectly with HierarchicalTable’s
HierarchicalTableComponentFactory’s createChildComponent() and destroyChildComponent()
methods. Basically, when a child component is created and if it’s a table, call
group.add(table.getSelectionModel()). When the table is destroyed, call
group.remove(table.getSelectionModel()). G8.1 HierarchicalTableDemo is an example to show
you how to use this.

Migration from Hierarchical Table Beta version
If you use HierarchicalTable for the first time, you can skip this section. If you used

HierarchicalTable beta version, you should read this to find out how to migrate from your old
code to the new one.

The main changes are in interface HierarchicalTableModel. Here are the details of interface
changes.

Old method New method

 boolean hasChildComponent(int row) boolean hasChild(int row)

 boolean isHierarchical(int row) the same

Component getChildComponent(int row) Object getChildValueAt(int row)

The reason for this change is to separate the model from view. The old interface gave
people the impression that we are mixing model and view. So the new interface is only about
data. To convert the data to a component, you need to use HierarchicalTableComponentFactory
defined on HierarchicalTable.

HierarchicalTableComponentFactory has two methods

 Component createChildComponent(HierarchicalTable table, Object value, int row);
 void destroyChildComponent(HierarchicalTable table, Component component, int

row);

For the createChildComponent() method, the value argument is the value that's returned
from the getChildValueAt() method in HierarchicalTableModel. The row is the same row as in
getChildValueAt(int row). You have two choices here: You can either always return null in

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

90

getChildValueAt(int row) method and completely let createChildComponent() figure out how to
create the component. Or you can return a value in the getChildValueAt(int row) method and let
createChildComponent() create the component, and then associate the component with the
value. If you're migrating from beta version, it’s easier to use the first way. You can simply
return null from getChildValueAt(int row), and pretty much copy the old code in the
getChildComponent(int row) method and put it into createChildComponent(). However, if your
child components are using the same component with different data, you might think about
changing to the second way. For example, if your child component is always a table, you can
return a table model in getChildValueAt(int row) - and in createChildComponent(), just set the
table model to the table. You can even use a table pool to contain all instances of table and
reuse them.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

91

TreeTable
TreeTable is another kind of table component that can display hierarchical data using a

table.

TreeTable is a combination of a tree and a table -- a component capable of expanding and
collapsing rows, as well as showing multiple columns of the same row. Tree and table work on
different data structure. The former is used to display hierarchical data. The latter is used to
display a flat tabular data. So in order to make the data works in TreeTable, we need to
“hierarchize” the flat tabular data. To make the design simple, we make the following
assumption

If the data can be used in TreeTable, it must be row-oriented.

Row-oriented means one dimension of the two dimension tabular data can be represented
as row. Then each row will provide data for the second dimension. Based on this assumption,
we introduce several concepts (they are all Interfaces) to make TreeTable possible.

Node: represent a node in tree data structure

Expandable: represent something can be expanded such as tree node with children.

Row: represent a row in table data structure – it is also the first dimension of the two
dimension tabular table data.

ExpandableRow: represent a row that can have children rows.

It will be simple to understand this using an example. A typical TreeTable example is the file
system. In file system, there are files and folders. Using the concepts above, each file will be a
Row; each folder will be an ExpandableRow. Folder (the ExpandableRow) can have children
which can be either files (the Row) or other folders (the ExpandableRow). See screenshot of a
TreeTable.

Figure 43 FileSystem TreeTable

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

92

The table model used by TreeTable is TreeTableModel. It extends AbstractTableModel.
However it's essentially a list of ExpandableRows or Rows. TreeTableModel is an abstract class.
The only method you has to implement is getColumnCount(). You might want to override
getColumnName(int). Otherwise, it will use "A", "B" etc as default names. You also need to make
the columns match with the value you returned in Row#getValueAt(int). Please be noted that
JIDE will create a root by default in TreeTableModel to make sure the update on the rows you
passed into TreeTableModel will be reflected in UI by firing table model events. You may
override createRoot() to create your own root rows although it is actually not visible.

Once we create a java.util.List of the Rows, you call

TreeTableModel model = new MyTreeTableModel(list);
TreeTable table = new TreeTable(model);

Now you get a TreeTable instance.

TreeTable uses a special cell renderer on the first column to paint +/- icon as well as tree
line. If the row is expandable, you will see +/- icon. Clicking on it will expand the row. Clicking
again will collapse it. You can also use keyboard to expand/collapse a row. Right arrow key will
expand the selected row and left arrow key will collapse it. If the selected row doesn't have
children or it is collapsed already, it will change the selection to its parent. If you try it, you will
find it is very convenient to navigate in the tree table using arrow keys.

We used the same +/- icons used in a regular JTree so it will change based on different
LookAndFeels. The tree lines can be turn on or off using setShowTreeLines(boolean). The line
color can be set by setTreeLineColor(Color). By default, it will use the JTree's tree line color
which is UIManager.getColor("Tree.hash").

Please note, in our TreeTable design, there are not usage of JTree or TreeModel or TreeNode
as defined in Swing. TreeTable extends JTable eventually and it has nothing to do with JTree.

Comparison between TreeTable and HierarchicalTable
Many people wonder when they should use TreeTable and when to use HierarchicalTable.

The following table will help you to understand and make you decision.

 HierarchicalTable TreeTable
Data format of top level A regular tabular data just like

JTable
A list of rows with hierarchical
information built in the data

Data format of child levels Any data. Same data as the top level
data

Nested components Any components There are no nested
components in tree table.
They are part of the
TreeTable.

Scalability Bad in the sense that each
children component is a real

Good. There is only one table
no matter how many nested

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

93

component. So if you have a
table with 100 rows all
expanded with a children table,
you will have 101 table
instances.

levels.

Level of hierarchies
(exclude the top level)

One. However you can archive
many levels by nested
HierarchicalTable inside
another HierarchicalTable.

As many as you want

From the table above, you can see which table to use is totally depending on what kind of
data you have. If the data on each child level can all be represent as table, it’s better to use
TreeTable. If not, you should use HierarchicalTable.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

94

GroupTable
GroupTable is a special TreeTable that can group rows who has the same value in certain

column into a group. It is an implementation that is very similar to the table used in Microsoft
Outlook Inbox.

GroupableTableModel
GroupableTableModel, just like ContextSensitiveTableModel is an interface that you can

implement it at any table model. It only has one method called getGrouperContext(). We use the
same design pattern here as ContextSensitiveTableModel. Just like ContextSensitiveTableModel
uses CellEditorManager and CellRendererManager to find the cell renderers and cell editors,
GroupableTableModel uses ObjectGrouperManager to find the ObjectGrouper which will be
used to group values.

Please note GroupableTableModel is totally optional. If the values in the table do not need
any special value grouping, you don’t need to implement this interface.

DefaultGroupTableModel
As we mentioned earlier, the GroupableTableModel is just a table model that can be

grouped. The one who actually does the grouping is the DefaultGroupTableModel.
DefaultGroupTableModel is a TreeTableModel that implements TableModelWrapper. It wraps
any TableModel or GroupableTableModel if special value grouping is needed.

DefaultGroupTableModel’s constructor takes any table model. You can then call
addGroupColumn to add the column that you want to group or setGroupColumns to set all
group columns at once. When you change the group columns, you call groupAndRefresh to push
the change to the screen.

Now let’s look at an example. There is a JTable. It has five columns. If you look at carefully,
you will see the value in source and destination column repeats. In this case, it would make
sense if we group by those two columns.

So you do something like this.

DefaultGroupTableModel groupTableModel = new
DefaultGroupTableModel(tableModel);

groupTableModel.addGroupColumn(2);

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

95

groupTableModel.addGroupColumn(3);
groupTableModel.groupAndRefresh();

Here is the result.

As you can see, there is actually a TreeTable. It will group by the source column first. Then

understand each group, it will group by destination column. You can independently expand or
collapse each group. Comparing with the flat table originally, this hierarchical view obviously
offers more information to the user. For example, your user can easily see how many items are
from source A, B and C.

We also have an option to flat down the group level. See the screenshot below. We still
have two group-by columns but we flat it down into one level so there are fewer hierarchies.

In the example, we didn’t use GroupableTableModel because there is no need to group the

values. See below for another example where you use an ObjectGrouper to group the value. It’s

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

96

a product table which has a sales column. The sales column is a dollar amount. We want to
group them into several groups.

First, we need an ObjectGrouper. If the value is less than $100, we put them into group 1. If
less than $1000 but greater than $100, we put into group 2. And so on.

 private static class SalesObjectGrouper extends DefaultObjectGrouper {
 public final static GrouperContext CONTEXT = new GrouperContext("Sales");

 public Object getValue(Object value) {
 if (value instanceof Number) {
 double v = ((Number) value).doubleValue();
 if (v < 100) {
 return new Integer(0);
 }
 else if (v < 1000) {
 return new Integer(1);
 }
 else if (v < 10000) {
 return new Integer(2);
 }
 else {
 return new Integer(3);
 }
 }
 return null;
 }

 public Class getType() {
 return int.class;
 }

 public ConverterContext getConverterContext() {
 return SalesConverter.CONTEXT;
 }
 }

We certainly don’t want to display 0, 1, 2 and 3 to users so we need an ObjectConverter to
convert the integer to some meaningful texts.

 private static class SalesConverter extends DefaultObjectConverter {

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

97

 public static ConverterContext CONTEXT = new ConverterContext("Sales");

 public String toString(Object object, ConverterContext context) {
 if (object instanceof Integer) {
 int value = ((Integer) object).intValue();
 switch (value) {
 case 0:
 return "From 0 to 100";
 case 1:
 return "From 100 to 1000";
 case 2:
 return "From 1000 to 10000";
 case 3:
 return "Greater than 10000";
 }
 }
 return null;
 }

 public boolean supportFromString(String string, ConverterContext context) {
 return false;
 }
 }

Now if you apply DefaultGroupTableModel to this GroupableTableModel, you will get
something like this screenshot. As you can see, we used the ObjectGrouper to decide the group
and we even display the group nicely using the converter.

You can optional use GroupTableHeader so that user can drag the columns to decide how to
group the table. See below.

Figure 44 Draggable GroupTableHeader

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

98

GroupList
GroupList is a JList that supports the grouping of items. When there is large number of items

in a JList and you need to organize them in several categories, this is where you can use
GroupList. Each group header appears slightly different from other regular rows as it uses a
different cell renderer you can set by yourself.

GroupableListModel
The most important part of

GroupList is the GroupableListModel.
GroupableListModel extends ListModel
and adds the following methods.

 Object getGroupAt(int index);
 Object[] getGroups();
 void

addListGroupChangeListener(ListGr
oupChangeListener listener);

 void
removeListGroupChangeListener(Lis
tGroupChangeListener listener);

The getGroupAt(int index) method provides the group information for each row in the list
model. It returns an object that identifies the group. It is normally a String. However you can use
any object type as long as you have cell renderer knows how to renderer it on UI. All rows that
belong to the same group should return the same object instance or those objects equal (based
on equals method).

The getGroups() method return a list of groups you ever return in getGroupAt method. The
main purpose of this method is to allow you to specify the order of the groups. You could return
less groups than they are actually used in getGroupAt(). In this case, the groups that are not
defined in getGroups() will be appended at the end of the list.

On top of GroupableListModel, we have two implementations - AbstractGroupableListModel
and DefaultGroupableListModel. The abstract version just implements the support for
ListGroupChangeListener and leave everything else related to grouping to you. The default one
extends DefaultListModel and add method such as setGroupAt, setGroups(), renameGroup() etc
methods allowing you to change the group information. If you already have a DefaultListModel,
you can replace it with DefaultGroupableListModel without any code change. Then later on, you
call setters to add group information. If you were using AbstractListModel, you can also replace
it with AbstractGroupableListModel without any code change. However, you still need to
override getGroupAt() and getGroups() in order to have any groups.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

99

LayoutOrientation
JList supports three layout orientations. They are

• VERTICAL: a vertical layout of cells, in a single column

• VERTICAL_WRAP: a "newspaper style" layout with cells flowing vertically then
horizontally when it reaches the list height.

• HORIZONTAL_WRAP: a "newspaper style" layout with cells flowing horizontally then
vertically when it reaches the list width.

GroupList supports all three layout orientations. However, since GroupList brings the
concept of grouping, it has to change the meaning of the layout orientation. First of all, the
group rows are not part of the layout. It always covers the whole list width. The layout of cells
only applies to the cell within the same group. In the case of VERTICAL layout, there isn’t much
difference with or without grouping. But in the case of two wrap layouts, it is quite different. We
had to introduce one property to GroupList called preferredColumnCount. In horizontal wrap
mode, we will wrap the cells when it reaches the preferredColumnCount. In the case of vertical
wrap, it will calculate items in each group and find out how many rows it will need for each
group and wrap when it reaches the row count vertically. For example, if there are 20 items in
the group and the preferred column count is 8, 20 divided 8 is 2 remaining 4, which means it
needs at least 3 rows to display all the cells. So we will layout three cells vertically and then wrap
and so on.

Careful readers might notice JList misses the fourth layout – HORIZONTAL. The reason I
guess is because the JList will be way too wide (although I can still argue that it could be useful
in some cases). In the case of GroupList, it is less a problem to support it as all items are divided
into groups so that each group has fewer items. So we added HORIZONTAL layout orientation
into GroupList.

• HORIZONTAL: a horizontal layout of cells, in a single row with in the same group.

As the group rows are different from regular rows, we provide setGroupCellRenderer
method to allow you to set your own cell renderer. The other method is setGroupCellSelectable.
In most cases, user doesn’t want to select the group cells. But if you want to select them, they
can always call setGroupCellSelectable to make the group cell selectable.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

100

 TableScrollPane
TableScrollPane is a component that supports table row header, row footer, column header,

and column footer. In fact, you can implement row header even without this component. You
basically create a separate table and call setRowHeaderView() to set it to JScrollPane. Now you
get a table with a row header. Sounds simple? Unfortunately it’s more than that. What you can’t
do with JScrollPane is that it doesn’t row footer and column footer. You also needed to create
two separate table models – one for row header and the other for the table itself – which might
be inconvenience. Of course, you also need to deal with keystrokes. As they are two tables,
keeping pressing left arrow or tab key won’t navigate from row header to the table. Don’t forget
the sorting. Sorting row header won’t change the sort order of the table because, again, they
are two tables. In fact, there are a lot of things you need to do in order to support row header.
TableScrollPane is such a component that takes care of all those for you.

To simplify the usage, we also create an interface MultiTableModel to replace TableModel.
Instead of using AbstractTableModel or DefaultTableModel, you can use
AbstractMultiTableModel or DefaultMultiTableModel respectively. Interface MultiTableModel
has a method called getColumnType(int column) 7 . By returning HEADER_COLUMN or
FOOTER_COLUMN or REGULAR_COLUMN, you can use one table model to define a table which
has header columns and footer columns.

Please see screenshot below for a typical use case of TableScrollPane. As you can see there
are frozen rows and columns. The first row and the last row are frozen. The first column and the
last two columns are frozen.

Figure 45 TableScrollPane

7 The interface has another method called getTableIndex(). In case you noticed it, this method is for
TableSplitPane, the next component we will discuss. To use in TableScrollPane, you just need to return 0
inthat method.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

101

The whole timesheet table is based on one MultiTableModel. To determine which column is
row header or row footer, you just need to return different values in getColumnType. See
below.

 public int getColumnType(int column) {
 if (column < 4) {
 return HEADER_COLUMN;
 }
 else if (column < HEADER.length - 4) {
 return FOOTER_COLUMN;
 }
 else {
 return REGULAR_COLUMN;
 }
 }

Even though header columns and footer columns are added as separate components, they
will work just like in one table. For example, row selection is synchonized. Tab key or left/right
arrows will navigate across all three tables. If you scroll vertically, all three tables will scroll
together. If you resize columns in any table, even the last column of the header column table
and the first column of footer column table. If you choose to have sortable table, sorting in one
table will affect other tables. Only one column will be sorted at a time.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

102

TableSplitPane
TableSplitPane is a special component that splits a large table into several smaller tables.

There are dividers between tables so each table can be resized independently. However, as just
like in TableScrollPane, all tables inside this component act just like one table. In short, this is an
ideal candidate if you have a large table model which has a lot of columns and those columns
can be divided into different categories.

TableSplitPane is built on top of MultiTableModel too. There is one more method on the
MultiTableModel interface called getTableIndex(int column). You can return any integer starting
from 0. If the value is 0, the column will in the first table. If 1, it will be in the second table, and
so on. TableSplitPane will look at the value returned from getTableIndex() and divider columns
into several tables. Then for each table, it will look at the value returned from getColumnType()
and divide them into header, regular or footer columns. As a result, you can use one table
model to define multiple tables; each can have its own header and footer. See below for an
example.

Figure 46 TableSplitPane

DualList

Features of DualList

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

103

DualList is a pane that contains two JLists and a bunch of buttons. The list on the left
contains all the items. The list on the right contains the items that are selected.

DualList uses DualListModel which is the model of this component. DualListModel is nothing
but a ListModel with additional methods to keep track of the selected item. If you want to
implement a DualListModel, you just need to use one of the two DualListModels we already
defined - AbstractDualListModel or DefaultDualListModel. Implementing them is as easy as
implementing AbstractListModel or DefaultListModel because we already implemented the
additional methods DualListModel adds.

With the help of DualListModel, DualList supports three kinds of selection modes. This mode
controls what to display in the right list when items are selected.

• REMOVE_SELECTION mode means the left list will remove the items if they are
selected to the right list. This mode can prevent user from selecting the selected
item again if it is not allowed in certain cases (see screenshot above on the left).

• DISABLE_SELECTION mode means the selected items will be shown as disabled. User
cannot select them anymore but they can still see them in the right list to show user
a complete unchanged list. (see screenshot above on the right)

• KEEP_SELECTION mode will not change the right list at all when items are selected.
This is the only mode which can result duplicated items to be selected. If that's what
you want in your situation, this mode is the one you should use.

Here is the list of features that DualList supports.

v Powerful selection feature. It allows single selection, multiple selection and multiple
interval selection on either list.

v Powerful reorder feature. After selecting the items, you can rearrange them to the
order you want though move up and move down actions. You can select multiple items
and rearrange them all at once.

v Complete keyboard support.

a. UP/DOWN/PAGE_UP/PAGE_DOWN keys to select items in either list.

b. LEFT/RIGHT/ENTER keys to move items between the two lists.

c. CTRL-UP/CTRL-DOWN keys to move selected items up and down in the selected
item list. CTRL-HOME/CTRL-END keys to move selected items to the top or the
bottom.

v Buttons to select and reorder the items. Each button can be shown or hidden
independently.

v Complete API support to do everything you can do through the UI.

v Mode support. The same DualListModel instance can be set to two or more DualLists,
and all the DualLists will be synchronized because they are using the same model.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

104

Classes, Interfaces and Demos

Classes

DualList
(com.jidesoft.list)

The main class for this component.

DualListModel
(com.jidesoft.list)

The model class for DualList.

AbstractDualListModel
(com.jidesoft.list)

Abstract implementation of DualListModel.

DefaultDualListModel
(com.jidesoft.list)

Default implementation of DualListModel.

Demos

DualListDemo
(examples\G31. DualList)

A demo to demonstrate the DualList. It selected from a list of
countries.

Code Examples
1. To create a DualList. There is no difference from creating a regular JList.

DualList dualList = new DualList(Object[] or java.utils.List);

2. The call above will create a AbstractDualListModel internally. To create a DualList with your
own DualListModel, do

DualList dualList = new DualList(DualListModel);

3. To select a few items using API. The code below will select the 2nd and 4th items from the
original list model.

DualListModel model = dualList.getModel();
model.addSelectionInterval(1, 1);
model.addSelectionInterval(3, 3);

4. To move all items to the right list. In the other word, select all items.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

105

dualList.moveRight();

5. To get the list of selected items.

Object[] items = dualList.getSelectedValues();

6. To change the selection mode. The selection mode can be REMOVE_SELECTION,
KEEP_SELECTION or DISABLE_SELECTION.

dualList.setSelectionMode(selectionMode);
// or
dualList.getModel().setSelectionMode(selectionMode);

7. To show or hide one of the buttons in the middle. The first parameter is the command
name. They are all defined in DualList beginning with COMMAND_.

dualList.setButtonVisible(DualList.COMMAND_MOVE_ALL_RIGHT. true or false);

DualTable

Features of DualTable

 DualTable is a pane that contains two JTables and a bunch of buttons. It looks just like DualList
except it uses table instead of list. The table on the left contains all the items. The table on the
right contains the items that are selected.

DualTable uses some model classes from DualList, for example, DualListModel. It uses
TableModelAdapter interface to get multiple values from an item in the DualListModel so that
they can be displayed in a table.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

106

With the help of DualListModel, DualTable supports three kinds of selection modes. This
mode controls what to display in the right table when items are selected.

• REMOVE_SELECTION mode means the left table will remove the items if they are
selected to the right table. This mode can prevent user from selecting the selected
item again if it is not allowed in certain cases (see screenshot above on the left).

• DISABLE_SELECTION mode means the selected items will be shown as disabled. User
cannot select them anymore but they can still see them in the right table to show
user a complete unchanged table (see screenshot above on the right).

• KEEP_SELECTION mode will not change the right table at all when items are
selected. This is the only mode that can result in duplicated items to be selected. If
that's what you want in your situation, this mode is the one you should use.

Here is the list of features that DualTable supports.

v Powerful selection feature. It allows single selection, multiple selection and multiple
interval selection on either list.

v Powerful reorder feature. After selecting the items, you can rearrange them to the
order you want though move up and move down actions. You can select multiple items
and rearrange them all at once.

v Complete keyboard support.

a. UP/DOWN/PAGE_UP/PAGE_DOWN keys to select items in either list.

b. LEFT/RIGHT/ENTER keys to move items between the two lists.

c. CTRL-UP/CTRL-DOWN keys to move selected items up and down in the selected
item list. CTRL-HOME/CTRL-END keys to move selected items to the top or the
bottom.

v Buttons to select and reorder the items. Each button can be shown or hidden
independently.

v Complete API support to do everything you can do through the UI.

v Mode support. The same DualListModel instance can be set to two or more DualLists,
and all the DualLists will be synchronized because they are using the same model.

Classes, Interfaces and Demos

Classes

DualTable
(com.jidesoft.grid)

The main class for this component.

DualListModel
(com.jidesoft.list)

The model class for DualList, the same as in DualList

AbstractDualListModel Abstract implementation of DualListModel.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

107

(com.jidesoft.list)

DefaultDualListModel
(com.jidesoft.list)

Default implementation of DualListModel.

TableModelAdapter An interface which can adapt a list model to a table model

Demos

DualTableDemo
(examples\G31. DualList)

A demo to demonstrate the DualTable. It selected from a
table of tasks.

Code Examples
8. To create a DualTable.

DualTable dualTable = new DualTable(Object[] or java.utils.List, a TableModelAdapter);

9. The call above will create an AbstractDualListModel internally. To create a DualTable with
your own DualListModel, do

DualTable dualTable = new DualTable (DualListModel, a TableModelAdapter);

10. To select a few items using API. The code below will select the 2nd and 4th items from the
original list model.

DualListModel model = dualTable.getModel();
model.addSelectionInterval(1, 1);
model.addSelectionInterval(3, 3);

11. To move all items to the right table. In the other word, select all items.

dualTable.moveRight();

12. To get the list of selected items.

Object[] items = dualTable.getSelectedValues();

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

108

13. To change the selection mode. The selection mode can be REMOVE_SELECTION,
KEEP_SELECTION or DISABLE_SELECTION.

dualTable.setSelectionMode(selectionMode);

or

dualTable.getModel().setSelectionMode(selectionMode);

14. To show or hide one of the buttons in the middle. The first parameter is the command
name. They are all defined in DualList beginning with COMMAND_.

dualTable.setButtonVisible(DualTable.COMMAND_MOVE_ALL_RIGHT. true or false);

TextFieldList

Features of TextFieldList

TextFieldList belongs to the same family of DualList and DualTable which tranfers object

from one component to a list. It contains a JTextField on the left and a JList on the right and a
bunch of buttons. The customer can input new items in the JTextField on the left and press the
transfer button to move it to the list on the right.

You could override isInputValid(String) to control which kind of inputs are allowed to be
transferred to the list.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

109

Magin Area
Magin is a thin vertical stripe that can be added next to any component that can be tall. For

example, any component with a vertical scroll bar such as JTable, JList, JTree, JTextArea,
CodeEditor etc. Usually the content in margin area will scroll vertically along with the content in
the component. A typical example is line/row number margin.

MarginArea is the container for margins. You can place a MarginArea to the left hand side of
a tall component then add many margin components into this MarginArea using
addMarginComponent(Margin magin).

MarginSupport and RowMarginSupport
There are common things to JTable, JList, JTree, JTextArea and CodeEditor. All of them could

be very tall and thus need a vertical scroll bar. This is the reason a margin could be useful. All of
them also have a row concept. That's why they can use row-based margins. In order to provide
the support for all of them without referring to the specific component in the margin code, we
introduced two interfaces called MarginSupport and RowMarginSupport. RowMarginSupport
extends MarginSupport. Further more, we created an implementation of RowMarginSupport for
each component. See below.

Create your own margin
All margins must implement an interface called Margin. We provide AbstractMargin which

implements most of the methods in Margin. We also provide AbstractRowMargin to make the
implementation of row-based margin easier.

Margin should paint itself completely instead using any child components. You don’t want
to add child components to margin mainly because the margin will scroll along with the text in
code editor and is usually very tall. You don’t want to deal with any child components or layout
manager for this particular component. Taking line number margin for example: say we have a
code editor has 1000 lines and 100 lines are visible in the view port, you of course can create
1000 JLabels and add them to the margin. Or you can paint the 100 strings on fly just for the
visible 100 lines. Obviously the second approach is much more efficient. Margin has
paintMargin method whichs you must implement in order to paint the margin.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

110

There are two categories of margins – row margin or non-row margin. Sometimes we refer
row as line which is more suitable for the case of CodeEditor or TextArea. But row or line are
esseitnally basically the same thing.

The row margin paints its content row by row. A typical example in this category is the row
or line number margin. Each painting code will just paint the rectangle area belong to that row.
In this case, we created AbstractRowMargin to make it simple. You need to implement the
paintRowMargin method in its subclass. Internally, we implemented the paintMargin method
on Margin interface and delegate to paintRowMargin to paint line by line. As you can see below,
all you need to do is to paint the content for a particular line at the specified rectangle. You
should never paint it outside the rectangular area.

 public void paintRowMargin(Graphics g, Rectangle rect, int row) {
 int lineNumber = ((RowMarginSupport)

_marginSupport).visualRowToActualRow(row) + 1;
 if (lineNumber <= ((RowMarginSupport) _marginSupport).getRowCount()) {
 String s = "" + lineNumber;
 g.setColor(getForeground());
 g.setFont(getFont());
 g.drawString(s, rect.x + rect.width - getFontMetrics(getFont()).stringWidth(s) - 3,

rect.y + (rect.height + getFontMetrics(getFont()).getAscent() -
getFontMetrics(getFont()).getDescent()) / 2);

 }
 }

There are many margins in this category. Breakpoint margin and bookmark margin are two
more such examples.

The non-row margin is the opposite of the first category. It is not limited by one row but
ranges one or several rows. In this case you don’t want to paint row by row but paint it across
many row. A typical example is code folding margin in CodeEditor. As the code folding ranges
from a start line to an end line, you just paint the whole range in one shot. For the margins in
this category, you need to extend AbstractMargin directly and implements the paintMargin
method. For performance reason, you should check the first visible line of the code editor and
the total visible line count. If you know you will paint outside the visible area, just don’t paint.

RowNumberMargin
Now let’s cover look at an example. Here is the RowNumberMagin. RowNumberMagin

extends AbstractRowMargin as you may expect.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

111

Figure 47 RowNumberMargin

Here is the code to create the UI above.

RowMarginSupport marginSupport = new ListRowMarginSupport(list, listScrollPane);
MarginArea marginArea = new MarginArea();
marginArea.addMarginComponent(new RowNumberMargin(marginSupport));

The code is very simple. All we did is to create a RowMarginSupport, in this case, it is a
ListRowMarginSupport as the component is a JList. Then we create a RowNumberMargin that
takes any RowMarginSupport. Because of this RowMarginSupport interface, we can easily
extend it to support many other components that have vertical scroll bar.

MarginPainter and LineMarginPainter
At the beginning, you most likely use one margin for one purpose. But sooner or later, you

will find out that’s a waste of screen space. You will start to think if you can combine several
margins that are not very busy into one margin. See screenshot below for an example. What you
see here is a brace matching margin over the code folding margin. Code folding margin could be
very busy but brace matching is not because there is only one brace matching at one time. So
it’s a perfect use case to paint the brace matching over the code folding to save some space.

Figure 48 An example of MarginPainter

Now let’s see how we do this. We added addMarginPainter method on AbstractMargin.
Assuming you will extend AbstractMargin in your margin. If so, you can add your own
MarginPainter to it.

MarginPainter is a painter interface which can paint the margin area. This painter is mainly
used to add extra content to an existing margin. You can add many MarginPainters to
AbstractMargin In order to decide the order to paint them, each MarginPainter has layer index.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

112

The lower the layer index is, the earlier it gets painted. In the other word, the painter has a
higher index will overwrite those that have lower index. The default layer index is defined as
LAYER_DEFAULT_INDEX in MarginPainter interface. The original content of the margin is painted
on this layer. For example, in code folding margin, code folding information is painted on the
layer of index LAYER_DEFAULT_INDEX. If you want to your painter painted before code folding
information, use a layer index smaller than LAYER_DEFAULT_INDEX. If you want it painted after
the code folding, use an index larger than LAYER_DEFAULT_INDEX.

Here is the code of how to adding a margin painter. The result is what the screenshot above
shows.

 CodeFoldingMargin margin = new CodeFoldingMargin();

 margin.addMarginPainter(new BraceMatchingMarginPainter());

 editor.getMarginArea().addMarginComponent(margin);

MarginPainter is mainly for non-line margin. For line margin, there is addLineMarginPainter
on AbstractLineMargin. It is almost the same as MarginPainter except it just paints the rectangle
area of a particular line.

CodeFoldingMargin
CodeFoldingMargin is a special margin that paints the code folding information. We

mentioned it several times when we cover the basic of margin. Now let’s say how to use it.

Figure 49 CodeFoldingMargin

As you can see from the screenshot above, each code folding has a start and an end (the 1st
screenshot above). Then there is a line between them to connect them. When it is folded, there
is just one icon to indicate where the folding is (the 2nd screenshot above), or when the code
folding starts and ends on the same line, you will only see one icon when it either expanded or
collapsed (the 3rd and 4th screenshots above).

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

113

In order to allow you to customize how the code folding is painted, we added
setCodeFoldingPainter to allow you set a CodeFoldingPainter. CodeFoldingPainter has all
methods you can implement in order to paint each part of the code folding. Here are a few
examples after we set our own customized painter.

Figure 50 Different CodeFoldingPainter to mimic Eclipse and NetBeans

Marker Area
MarkerArea is a special area on the right side of a tall component, after the vertical

scroll bar. See the picture on the right for an example. Since it appears outside the
scroll bar, it doesn’t scroll with the content. Both MarkerArea and MarginArea are for
tall component that needs vertical scroll bar. However the MarkerArea doesn't change
when scrolling v.s. the MarginArea will change content while scrolling.

The main usage of MarkerArea is to use limit vertical space to display a condense
information for this tall component so that user has an overview of what's going on
inside this tall component. For example, a table data is constantly updating (such as a
table that displays real time data). If the updating rows are not in the viewport, you
will miss them. In this case, you can use the MarkerArea to show a color line or color lines
(called marker) to indicate a row or some rows are updating. Since the MarkerArea is not
scrolling, you can always see the markers. Similar usages are highlights, errors, todo’s. Users not
only can see all of the makers of the table in one shot but also can click on the marker on the
marker stripe and jump right to the row.

MarkerSupport
In order not to refer to a specific component in MarkerArea, we introduced two interfaces

MarkerSupport, similar to what we did in the margin area. While AbstractMarkerSupport simply
provdes a MarkerModel in the implementation, while AbstractRowMarkerSupport assumed the
component has the same row height for all the rows so that it can implement indexToPoint and
pointToIndexRange methods when giving the row height and the row count. We created an
implementation of MarkerSupport for the specific component. See below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

114

Marker and MarkerModel
From data point of view, Marker represents a range of elements in the component and the

status associated with the elements. It has a start offset and an end offset. By default, there are
two types of markers - error and warning. But you can always define your own types of markers.
You can also associate a tool tip with a marker. The tool tip will be shown when user mouse
moves over the marker stripe.

MarkerModel is the model class that stores all the markers. You can use this class to
add/remove/update markers. The change will be shown on the MarkerArea immediately.

Marker Eye and Marker Stripes
MarkerEye is at the top of the marker area. It indicates the inspecting status. The paint of

MarkerEye is done by a class called MarkerEyePainter. By default, DefaultMarkerEyePainter is
used. You can always set your own painter by calling setPainter(MarkerEyePainter).

MarkerStripe is a panel below the MarkerEye to display all the markers in a marker model.
The paint of each stripe is done by a class called MarkerStripePainter. By default,
DefaultMarkerStripePainter is used. You can always set your own painter by calling
setPainter(MarkerStripePainter).

MarkerArea
MarkerArea is the component that displays the marker. It accepts any MarkerSupport in the

constructor. Internally it will use MarkerEye and MarkerStripe to display the markers.

There are many methods on MarkerArea. Ideally you shouldn’t call methods on MarkerEye
and MarkerStripe directly as the MarkerArea should have the methods that delegate to these
two sub-components.

Marker has different types. You can register the types with MarkerArea using
registerMarkerColor. Please choose colors consistently inside your application. For example, if
yellow means changes in your application, register yellow as the marker color for change
markers. DefaultMarkerStripePainter will use the registered color to paint the marker. Of course
if you set your stripe painters, you can do whatever you want for each marker type.

TableHeaders
JTableHeader is the Swing class for the header of a JTable. In order to support various

features in JIDE Grids, we have to enhance the JTableHeader. For example, SortableTable needs
to paint a sort arrow onto the header. AutoFilter feature needs a drop down button on the
header. Nested table header requires a header that supports mutliple rows and the grouping.
Then for the GroupTable, we need a header that supports drag-n-drop to group the columns.
People also have requirements to show multiple line text or bold/italic text on the header. We
gradually added some of the features mentioned above, i.e. using header cell renderer for the
sort arrow and drop down button. However it has the limitation because usig cell renderer will

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

115

break the native look of the header on Windows and Mac OS X. These table headers will look
different from the standard table header. We also couldn't support both nesting and auto filter
feature, or both drag-n-drop grouping and auto filter feature on one table header. All those
limitations forced us to look into a redesign. Since JIDE 3.x release, we overhauled the design of
table header related features.

Table Header Hierarchy
This is the table header hierarchy. It is now a single hierarchy until the last level. As you can

see, NestedTableHeader and GroupTableHeader is also an AutoFilterTableHeader.

TableHeaderCellDecorator
Instead of using the cell renderer approach in the old design, we introduce a new approach

which we haven't seen in any other projects. TableHeaderCellDecorator provides a way for users
to paint over the margin of any table header's cells. You can use it on any table headers that is a
SortableTableHeader. You just need to call addCellDecorator to add your own cell decorator.
The added order of the cell decorator matters. The first cell decorator that is added will paint
first. Because each cell decorator will reserve a margin from the cell rect for its painting, the
next cell decorator will get a smaller cell rect.

We used this cell decorator for both SortableTable's sorting arrow as well as the drop down
button for the auto-filter feature.

For example, here is how the default table header looks like on Windows 7. The left one is
the default state and the right one is the rollover state.

Our goal of the cell decorator is to keep the look exactly the same as the default one. And

here is what it looks after we use cell decorator to add a filter icon to the header. As you can
see, the look is very consistent.

Note that we can also painting both sort arrow and the filter icon which was not possible in

the earlier design. See below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

116

Not only that we are using TableHeaderCellDecorator, but also it is a public API, which
means you can also use this feature to decorate your table header.

Please take a look at the screenshot below which were taken under different OS and L&Fs.

Figure 51 TableHeader under different L&Fs and OS

StyledLabel Powered TableHeader
Since JIDE 3.2 release, we optionally use StyledLabel to paint the text for the table header.

This is no API changing for this feature. It is hidden behind the column name as defined in
TableModel's getColumnName(int column). You can use an annotated string that is available in
StyledLabelBuilder. If you return a regular string without any annotation, JLabel is used to paint
the cell. But if you use an annotated string that StyledLabel can recognize, StyledLabel is
automatically used.

You can add a lot of interesting styles to your header. Here is a show-off example that has
absolutely no real meaning. You can make it more meanful. For example, show a bold text on
the header if the column is sorted.

Here is the code for it.

 @Override
 public String getColumnName(int column) {
 switch (column) {
 case 0:
 return "Java{TM:sp}";
 case 1:
 return "CO{2:sb}";
 case 2:
 return "{Waved:w}";
 case 3:
 return "{Red:f:red} {Blue:f:blue}";
 case 4:
 return "{Red:b:red} {Blue:b:blue}";

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

117

 case 5:
 return "{Bold:b} {Italic:i}";
 case 6:
 return "{Strike:s} {Double-strike:ds}";
 }
 return "";
 }

We also support text wrapping. You just need to enabled it using the global flag feature
introduced to StyledLabel. For example, to enable text wrapping on column "this is a long text",
you can return "this is a long text@r:2:1:4". Everything after "@" symbol is considered as global
flags. You can have multiple flags separated by ",". "r:2:1:4" means it will do row wrapping, by
default is 2 rows, minimum 1 rows and maximum 4 rows.

HeaderStyleModel and CellStyleTableHeader
Another way to bring style to the header is to use HeaderStyleModel. HeaderStyleModel

uses a similar approach as CellStyleModel. You again implement HeaderStyleModel on your table
model and you return the CellStyle you want in getHeaderStyleAt method.

Pretty much all styles available in CellStyle is available on CellStyleTableHeader. See below
for an screenshot.

Figure 52 HeaderStyleModel

TableCellEditorRenderer
JTable uses something called cell renderer and cell editor for cell rendering and editing

respectively. For the same cell, the renderer component is usually difference from the editor
component. For example, most cell renderer components are JLabel. But to edit a cell, JTextField
is usually used as the cell editor component. However, in some cases, maybe we want the same
component to be used for both the renderer component and the editor component. That's why
we introduced TableCellEditorRenderer so that you can use the same component for both
renderer and editor.

Why do we want the same component use the same component as both editor and
renderer? There are at least two reasons.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

118

To better indicate the cell is editable
JTable renderers the cell using JLabel by default. Editable cells have no visual difference

from non-editable cells. Users have to click or double click on the cell to figure out if the cell is
editable. So some users will prefer to have a different way to renderer the cell to indicate it is
editable. JIDE Grids provides cell style which is one way to make it happen as you can use
CellStyle to make the editable cells having white background and non-editable cells gray
background. Another way is to this EditorRenderer approach and use editors such as JTextField
or JComboBox/ExComboBox as the renderer. If users see a drop down button on the cell, they
know the cell will be editable without clicking on it.

To interactive with mouse events on the cell level
As you know already, JTable paints the cell, not places a real component on the cell. That's

why it was called a cell renderer. When you moves your mouse over a cell, the mouse events
will not interactive with the cell renderer component because it is just a painted image. For
example, if you use as JButton as cell renderer and JButton, if placed in a JPanel, will a rollover
effect, but the rollover effect will not work in JTable. Clicking on the button-based cell renderer
will not trigger the button action either. Because of this, it was always a challenge to implement
hyperlink type of features in JTable. The cell editor, on the other hand, is a real component that
is placed on the cell. So it will interactive with mouse events. This is a hint. To implement
hyperlink, we can use this EditorRenderer so that the renderer and the editor use the same
hyperlink button. We can add a mouse listener to JTable. When JTable is over a cell, we
automatically and silently enter cell editing mode. Since the renderer and the editor are the
same, user won't even notice the cell is in editing mode when rollover.

Sounds easy? Right, except there is one minor issue. JTable only allows one cell to be editing
at a time. So we start the cell editing automatically, the previous editing cell has to stop editing.
It might not be a problem if the table doesn't contain any editable cells other than hyperlinks.
But unfortunately in most cases, it is not true. You certainly don't want the cell stop editing
automatically when user simply moves the mouse. To fix this issue, we introduced a new
rolloverCellAt method to JideTable. This method works just like editCellAt except it doesn't
involve with the existing cell editing mechanism. When you call rolloverCellAt, a cell editor will
be created and placed over the cell. However the old cell editor, if it has one, will remain there.
This way user can still do cell editing while having mouse interaction over other cells.

Hyperlink in Cell

This is probably one of the most asked features but so far we haven't seen anyone did it
right. There was post at http://java-swing-tips.blogspot.com/2009/02/hyperlink-in-jtable-
cell.html but it is a very bad example. It calls table.repaint() in mouseMoved method. Is it the
reason people think Swing is slow? It is of course very tempting to copy an existing example
from web but you really need to cautious about you are copying.

The approach we took for the hyperlink feature is to use both editor component and
renderer component. We created a new class called HyperlinkTableCellEditorRenderer. It uses
JideButton as the hyperlink component. The action listener can be set. We didn't use
CellRendererManager in this case as this renderer/editor is probably will only be used for this

http://java-swing-tips.blogspot.com/2009/02/hyperlink-in-jtable

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

119

particular table because of the customized action listener thing. That's why we simply set it to
TableColumn. Note that we set it for both the cell renderer and cell editor.

HyperlinkTableCellEditorRenderer renderer = new HyperlinkTableCellEditorRenderer();
renderer.setActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 Object source = e.getSource();
 JOptionPane.showMessageDialog(table, ((JideButton) source).getText() + " is

clicked");
 }
});
table.getColumnModel().getColumn(0).setCellRenderer(renderer);
table.getColumnModel().getColumn(0).setCellEditor(renderer);

The next thing you need to do is to use a util class called RolloverTableUtils. This util has a
install method which will add a mouse motion listener to the JTable. The listener will
automatically force a cell to enter editing mode or the rollover mode when the mouse is over
the cell. Once the cell is editing or rollover mode, the componet itself will reponse to mouse
event thus you see the cursor change as well as clicking will trigger the action. editing.

 RolloverTableUtils.install(table);

Here is what it looks like.

Figure 53 Hyperlink in JTable

This approach has absolutely no performance problem as the link above has. The only extra
thing we did is to check if the cell should enter editing mode which is very fast. You can refer to
the JavaDoc of RolloverTableUtils for more information.

You can also use JButtons in JTable that act like real buttons. by using
ButtonTableCellEditorRenderer. The usage is exactly the same as the hyperlink example. If you
want to have mutliple buttons in the same cell, that's also covered. The HyperlinkCellDemo has
an example of it (refer to the second column in the table above which contains cells with two
buttons in each cell).

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

120

Internationalization and Localization
We have fully considered i18n and l10n. All strings used by JIDE Grids have been put into

properties files under each package. Some users contributed localized version of those files and
we put those files inside jide-properties.jar. If you want to support languages other than those
we provided, just extract those properties file, translated to the language you want, add the
correct postfix and then jar them back into jide-properties jar. You are welcome to send the
translated properties file back to us if you want to share it.

	Table of Contents
	Purpose of This Document
	What is JIDE Grids
	Packages
	Class Hierarchy of All the JIDE Tables
	JideTable
	Validation Support in JideTable
	Cell Level Validation
	Table Level Validation
	Row Level Validation
	ValidationResult

	Undo Support in JideTable
	DefaultUndoableTableModel and AbstractUndoableTableModel
	Keystrokes for Undo and Redo

	TransferHandler Enhancement in JideTable
	Converter
	CellEditors and CellRenderers
	NavigableModel and NavigableTable
	Customize the navigation keys

	CellSpanTable
	CellStyleTable
	Available CellStyles
	Where to Define CellStyle
	CellStyle Merging

	SortableTable
	Comparator
	Sortable Table
	SortableTableModel
	As a developer, how do I use it
	How to Compare
	The performance of SortableTableModel

	Filter and FilterableTableModel
	AutoFilterTableHeader
	TableModelWrapper
	CompoundTableModelEvent
	Sortable/Filterable List and Tree
	SortableListModel and SortableTreeModel
	FilterableListModel and FilterableTreeModel

	More Filters and CustomFilterEditor
	FilterFactoryManager
	CustomFilterEditor
	TableCustomFilterEditor

	Property Pane
	What does a PropertyPane look like?
	As a user, how do I use it?
	As a developer, how do I use it?

	BeanProperty and BeanIntrospector
	Color Related Components
	ColorChooserPanel
	Color(Ex)ComboBox
	Keyboard Support

	Date Related Component
	DateChooserPanel
	Date(Ex)ComboBox
	Keyboard Support
	CalendarViewer

	ComboBox Extension
	Available ExComboBoxes
	Supporting 3rd Party L&F for ExComboBox

	How to create your own Cell Renderer and Cell Editor
	Hierarchical Table
	HierarchicalTableModel
	HierarchicalTable
	Container for Child Component
	Maintaining single selection
	Migration from Hierarchical Table Beta version

	TreeTable
	Comparison between TreeTable and HierarchicalTable

	GroupTable
	GroupableTableModel
	DefaultGroupTableModel

	GroupList
	GroupableListModel
	LayoutOrientation

	TableScrollPane
	TableSplitPane
	DualList
	Features of DualList
	Classes, Interfaces and Demos
	Code Examples

	DualTable
	Features of DualTable
	Classes, Interfaces and Demos
	Code Examples

	TextFieldList
	Features of TextFieldList

	Magin Area
	MarginSupport and RowMarginSupport
	Create your own margin
	RowNumberMargin
	MarginPainter and LineMarginPainter
	CodeFoldingMargin

	Marker Area
	MarkerSupport
	Marker and MarkerModel
	Marker Eye and Marker Stripes
	MarkerArea

	TableHeaders
	Table Header Hierarchy
	TableHeaderCellDecorator
	StyledLabel Powered TableHeader
	HeaderStyleModel and CellStyleTableHeader

	TableCellEditorRenderer
	To better indicate the cell is editable
	To interactive with mouse events on the cell level
	Hyperlink in Cell

	Internationalization and Localization

