
JIDE Dashboard Developer Guide
Contents
PURPOSE OF THIS DOCUMENT .. 1

FEATURES .. 2

JIDE DASHBOARD ... 2

OVERVIEW OF JIDE DASHBOARD APIS ... 4

GADGETCOMPONENT... 5

MULTIPLE DASHBOARDS .. 5

PERSIST THE LAYOUT .. 6

DASHBOARD EVENTS .. 6

INTERNATIONALIZATION SUPPORT ... 7

Purpose of This Document

dash·board (dāsh'bôrd', -bōrd')
n. A panel under the windshield of a vehicle, containing indicator dials,
compartments, and sometimes control instruments.

The dashboard in a vehicle contains instruments and controls pertaining to operation of the
vehicle. It is critical because it displays the important information in the real time and gives user
the quick access to common tasks. JIDE Dashboard is as important except it is not for a vehicle
but for a software application.

Imagining your application deals with real time data, there are tons of information you want
to show to your users (such as a stock trading or a network device monitor application). There
certainly isn’t enough space to show all of the information. It’s also hard to guess what users
really want to see. So how about let user choose what to display? That's where you need JIDE
Dashboard.

JIDE Dashboard provides a place holder to show all kinds of widgets so that user can
perform common task and quickly access to important information. Instead of letting the
developer design the layout and place the widgets, JIDE Dashboard allows your users to fully
customize it. All you need to is to provide the widgets. Your end users will drag the widget from
the widget palette and place them at the places they want.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

It is worth noting that the dashboard concept is used widely in the computer industry. Mac
OSX has Dashboard1. If you google “dashboard”, the first entry is actually Mac OSX Dashboard. I
am glad that they didn’t trademark it. Microsoft VistaTM has Sidebar2 and Yahoo! has Yahoo!
Widgets3. All those three products are for the same purpose. Of course those three products are
for the operation systems v.s. JIDE Dashboard is specifically designed for your application. On
the other hand, Google’s iGoogleTM 4 and Yahoo’s My Yahoo!5 are web implementation of the
same concept.

This developer guide is designed for developers who want to learn how to use JIDE
Dashboard in their applications.

Features
Here are the main features of JIDE Dashboard.

v Dashboard supports drag and drop to arrange the widgets.

v Support built-in palette to list all available gadgets.

v Supports multiple dashboards

v Built-in persistence of the layout of all dashboards and widget settings.

v Supports any component as the widget.

v Supports column resizable

v Gadget component supports maximization/restoration

JIDE Dashboard
Here is what dashboard looks like under Window XP L&F with Office2003 style.

1 http://www.apple.com/macosx/features/dashboard/ (Mac OSX Dashboard)
2 http://vista.gallery.microsoft.com/vista/SideBar.aspx (Microsoft Vista Sidebar)
3 http://widgets.yahoo.com/gallery/ (Yahoo! Widget)
4 http://www.google.com/ig (Google’s iGoogle)
5 http://my.yahoo.com/ (Yahoo’s My Yahoo!)

http://www.apple.com/macosx/features/dashboard/
http://vista.gallery.microsoft.com/vista/SideBar.aspx
http://widgets.yahoo.com/gallery/
http://www.google.com/ig
http://my.yahoo.com/

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

Figure 1 Overview of Dashboard

On the top level, there is DashboardHolder which holds one or more Dashboard. It also provides
a place to put the GadgetPalette. The Dashboard contains GadgetComponent which is created
by Gadget.

The gadgets’ position can be rearranged using drag-n-drop. See below for an example. As you
can see, we provided a nice transparent effect to guide you during the drag-n-drop process.

Figure 2 Drag-n-drop to rearrange gadgets

Dashboard

GadgetComponent

GadgetPalette

DashboardHolder

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

Overview of JIDE Dashboard APIs
There are five main classes in JIDE Dashboard APIs – GadgetManager, DashboardHolder,

Dashboard, Gadget, and GadgetComponent. Except GadgetManager, we mentioned all others
in the overview screenshot above.

You can view GadgetManager as the model of the whole JIDE Dashboard. It has a list of
dashboards and gadgets.

Dashboard is the panel that contains all the gadget components. When a dashboard is
created, it is empty. User will click the “Show Palette” button to show the palette and drag
gadget from the palette onto the dashboard. Where does the palette find out all available
gadgets? It is from GadgetManager. Developer will create all Gadgets and added them to
GadgetManager. In addition to manage the list of gadgets, GadgetManager also manages a list
of dashboards.

You may think Gadget is a Component. In fact, Gadget is just an interface containing the
name, title, icon (small and large) etc information. We also have AbstractGadget that
implements Gadget interface. It is not a Component either. When a gadget is dragged and
dropped to the dashboard, we will call a create method on Gadget interface to create the actual
component which is what we called GadgetComponent. GadgetComponent again is an interface
but those who implement it must also be a real Component. When the component is removed
from the dashboard, we will call the dispose method. Here are the two methods to create and
dispose the GadgetComponent.

GadgetComponent createGadgetComponent();

void disposeGadgetComponent(GadgetComponent component);

By using this one-Gadget-multiple-GadgetComponent design, we are able to support two
important features of dashboard:

1. Allow the same gadget to be displayed several times on the dashboard (most likely with
different settings).

2. Allow any component to be used as gadget component without extending a concrete
class provided by us.

All gadget components created by GadgetPalette via drag-n-drop support further drag-n-
drop by default. But if you call createGadgetComponent yourself to create a component and add
it directly to Dashboard, it won’t support drag-n-drop. It’s not surprise as we don’t have control
over what component you will create in this case, so we won’t get the chance to add the
necessary mouse listener. In this case, you can call GadgetManager#installListeners method so
that the component can be drag-n-dropped just like those created by GadgetPalette. For the
same reason, if you remove it from dashboard and want to call disposeGadgetComponent, you
should call GadgetManager#uninstallListeners to avoid any memory leaks.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

GadgetComponent
Any component can be the GadgetComponent. We use CollapsiblePane as the default

gadget component and implement a class called CollapsiblePaneGadget. CollapsiblePane
supports collapsible feature, which is a useful feature for a gadget component.

In CollapsiblePaneGadget, the title buttons are not visible by default. Instead, you can set a
message, which will be shown in the title pane area. As one of the purposes of dashboard is to
display the information of your system, this message is a good place to show the current status
of this gadget. When the mouse is moved over the title pane, the title buttons will be displayed.
By default, we have three buttons – collapse/expand, maximize/restore and close. The fourth
button as you see below is added in our demo to show you how to add extra buttons.

In your application, you can also create your own GadgetComponent. The source code of

CollapsiblePaneGadget mentioned above is available in the demo. We also create
RegularPanelDashboardDemo and DockableFrameDashboardDemo to show you how to create
your own GadgetComponent using a regular JPanel and a DockableFrame respectively. Again,
the source code for both demo and the gadgets are available.

Multiple Dashboards
JIDE Dashboard supports multiple dashboards. GadgetManager has all the necessary

methods to support this feature. If it is up to you how you arrange the multiple dashboards. You
can make a JList on the left to display the dashboard names and a JPanel with CardLayout to
switch to different dashboard depending on the selection in the JList.

The tabbed pane is certainly a good way to display multiple panels. So we created
DashboardTabbedPane which implements DashboardHolder. The DashboardTabbedPane uses
JideTabbedPane to support multiple dashboards. See below.

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

The toolbar on the right side of the tabbed pane can be customized by overriding
createToolBarComponent of DashboardTabbedPane. See blow for the code and the result.

 DashboardTabbedPane tabbedPane = new DashboardTabbedPane(manager){

 protected Container createToolBarComponent() {

 Container toolBarComponent = super.createToolBarComponent();

 toolBarComponent.add(new JideButton("My Button"));

 return toolBarComponent;

 }

 };

Persist the Layout
DashboardPersistenceUtils is the class that can save DashboardHolder as xml file and load

them back. In addition, the gadget’s application specific setting will be saved as long as the
GadgetComponent correctly implements the getSettings and setSettings methods.

The reason we didn’t build this feature into DashboardHolder itself but provide a separate
class for it is because we think you might have your own to persist it as the xml format in your
application.

All methods on DashboardPersistenceUtils are static. There are several overloaded load()
methods, which loads dashboard layout and gadget settings from an xml file, or from
InputStream, or from Document (org.w3c.dom.Document).

The save() method will save dashboard layout and gadget settings as Document or file.
Please note save() method will use classes XMLSerializer and OutputFormat. Those two classes
are part of xerces.jar before but now they are also part of JDK5. If you are using JDK5 and above,
there is nothing you need to do. However if you are still using JDK1.4.2 or below, you need to
include xerces.jar in your class path. Otherwise you will get NoClassDefFoundError during
runtime.

Dashboard Events
GadgetManager will fire DashboardEvent and GadgetEvent when something happened. You

can listen to the events by adding a DashboardListener or a GadgetListener to GadgetManager.
You will receive an notification when

v A dashboard is added: DashboardEvent.DASHBOARD_ADDED

v A existing dashboard is removed: DashboardEvent.DASHBOARD_REMOVED

v A gadget is added: GadgetEvent.GADGET_ADDED

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

v A gadget is removed: GadgetEvent.GADGET_REMOVED

v A gadget is shown on a dashboard: GadgetEvent.GADGET_COMPONENT_SHOWN

v A gadget is hidden from the dashboard: GadgetEvent.GADGET_COMPONENT_HIDDEN

v A gadget component is created: GadgetEvent.GADGET_COMPONENT_CREATED

v A gadget component is disposed: GadgetEvent.GADGET_COMPONENT_DISPOSED

v A gadget component is maximized: GadgetEvent.GADGET_COMPONENT_MAXIMIZED

v A gadget component is restored: GadgetEvent.GADGET_COMPONENT_RESTORED

v A gadget component is resized: GadgetEvent.GADGET_COMPONENT_RESIZED

You can choose to handle those events by looking at the event id.

Internationalization Support
All Strings used in JIDE Dashboard are contained in one properties file called

dashboard.properties under com/jidesoft/dashboard. Some users contributed localized version
of this file and we put those files inside jide-properties.jar. If you want to support languages
other than those we provided, just extract this properties file, translated to the language you
want, add the correct postfix and then jar it back into jide-properties jar. You are welcome to
send the translated properties file back to us if you want to share it.

	Contents
	Purpose of This Document
	Features
	JIDE Dashboard
	Overview of JIDE Dashboard APIs
	GadgetComponent
	Multiple Dashboards
	Persist the Layout
	Dashboard Events
	Internationalization Support

